Refine Your Search

Search Results

Standard

FIBER OPTIC CABLES

2018-08-27
CURRENT
ARINC802-3
This specification covers the performance requirements, dimensions, quality assurance criteria, test procedures, and cable codification for fiber optic cables suitable for use on commercial aircraft.
Standard

FIBER OPTIC FERRULE MECHANICAL TRANSFER

2018-08-06
CURRENT
ARINC846
This specification covers the dimensions, performance, and quality assurance criteria for fiber optic MT contacts, including performance test requirements and procedures, suitable for use on commercial aircraft.
Standard

AIRCRAFT DATA INTERFACE FUNCTION (ADIF)

2017-08-09
CURRENT
ARINC834-7
This document defines an Aircraft Data Interface Function (ADIF) developed for aircraft installations that incorporate network components that are based on commercially available technologies. This document defines a set of protocols and services for the exchange of aircraft avionics data across aircraft networks. The goal is to provide a common set of services that may be used to access specific avionics parameters. The ADIF may be implemented as a generic network service, or it may be implemented as a dedicated service within an ARINC 759 Aircraft Interface Devices (AID) such as those used with an Electronic Flight Bag (EFB).
Standard

AERONAUTICAL MOBILE AIRPORT COMMUNICATION SYSTEM (AEROMACS) TRANSCEIVER AND AIRCRAFT INSTALLATION STANDARDS

2017-07-07
CURRENT
ARINC766
This documents defines the Installation Characteristics of an airborne radio transceiver capable of broadband wireless communication with an Airport Surface Network. The Aeronautical Mobile Airport Communications System (AeroMACS) Radio Unit (ARU) will operate in the aeronautical protected frequency of 5091 MHz to 5150 MHz, utilizing the IEEE 802.16e WiMAX protocol. It is intended to offload some of the congested narrowband VHF airport traffic used for ATS and AOC communications. ARU and Antenna Form, Fit, Function and Interfaces are described.
Standard

DATA LOADING SPECIFICATIONS FOR AIRCRAFT COMPONENTS

2017-07-06
CURRENT
ARINC849
This document defines information required to load data into aircraft components while not installed aboard an aircraft. The objective is to address all levels of data loading processes as related to component maintenance and repair within a shop environment.
Standard

FIBER OPTIC EXPANDED BEAM TERMINI

2016-12-19
CURRENT
ARINC845
This document defines a fiber optic Expanded Beam (EB) termini for the air transport industry. The goal is to avoid the proliferation of different designs of termini to serve the same functions on different aircraft models. This specification defines generic fiber optic EB termini needed for all types of aircraft.
Standard

MEDIA INDEPENDENT AIRCRAFT MESSAGING (MIAM)

2016-07-20
CURRENT
ARINC841-3
The purpose of this document is to provide an industry standard for Media Independent Aircraft Messaging (MIAM) which permits the exchange of a large volume of data over Aircraft Communications Addressing and Reporting System (ACARS) subnetworks or broadband Internet Protocol (IP) subnetworks.
Standard

ON-GROUND AIRCRAFT WIRELESS COMMUNICATION

2016-07-14
CURRENT
ARINC822A
This specification describes the functionality and interfaces of an Internet Protocol (IP)-based wireless communications system between an aircraft on the ground and a ground-based network using Wireless Local Area Network (WLAN) and/or cellular radios and protocols. The ground-based network will be primarily used to provide connectivity to an airline's back office or to its back-end maintenance systems although other uses are also possible when there is a need to transfer data to or from the aircraft's applications while it is taxiing or parked. Gatelink is the accepted industry term for this type of connection. This document is a major revision to ARINC Specification 822 released in 2008.
Standard

AIRCRAFT SOFTWARE COMMON CONFIGURATION REPORTING

2015-07-31
CURRENT
ARINC843
This standard defines a common configuration report format that can be retrieved from an aircraft for use by ground tools and maintenance personnel. Reports will be generated in Extensible Markup Language (XML) format and structured as defined by this document. Several optional elements and attributes are defined to allow flexibility for a given report. This standard provides aircraft manufacturers, regulatory agencies, and airlines a format standard for aircraft configuration reporting, and facilitates automated comparison of configuration data reports (e.g., authorized versus as flying, etc.).
Standard

AIRCRAFT/GROUND INFORMATION EXCHANGE (AGIE) USING INTERNET PROTOCOLS

2014-09-15
CURRENT
ARINC830
The purpose of this document is to define a general purpose non-proprietary information exchange framework and protocol for the conduct of Internet Protocol based message traffic between aircraft and airline ground infrastructure. This standard is motivated by the vision to substantially simplify information processing management for airlines by eliminating multiple dissimilar implementations with a single universal system and thereby establishing a more economical environment.
Standard

MARK 1 AVIATION KU-BAND AND KA-BAND SATELLITE COMMUNICATION SYSTEM PART 1 PHYSICAL INSTALLATION AND AIRCRAFT INTERFACES

2014-08-29
CURRENT
ARINC791P1-2
This standard sets forth the desired characteristics of Aviation Ku-band Satellite Communication (Satcom) and Ka-band Satcom Systems intended for installation in all types of commercial air transport aircraft. The intent of this characteristic is to provide guidance on the interfaces, form, fit, and function of the systems. This document also describes the desired operational capability of the equipment needed to provide a broadband transport link that can be used for data, video, and voice communications typically used for passenger communications and/or entertainment. The systems described in this characteristic are not qualified, at this writing, for aviation safety functions.
Standard

AIRCRAFT INTERFACE DEVICE (AID)

2014-07-15
CURRENT
ARINC759
This document sets forth the characteristics of an Aircraft Interface Device (AID) intended for installation in commercial aircraft. The intent of the document is to provide general and specific design guidance for the development of an AID for use in retrofit applications associated with aircraft typically developed between the mid-1970s through the 1990s, that primarily utilize ARINC 700 series avionics, and that interface with the aircraft via ARINC 429 and ARINC 717 unidirectional buses and Hi/Lo discrete signals. This document describes the desired operational capability of the AID and the standards necessary to ensure interchangeability.
Standard

AVIATION SATELLITE COMMUNICATION SYSTEM PART 1 AIRCRAFT INSTALLATION PROVISIONS

2012-06-26
CURRENT
ARINC741P1-14
This document defines the characteristics of first generation L-band satellite communication system installations including the avionics equipment. This document provides traditional form, fit, function, and interface standards for the installation of Satcom equipment for use in all types of aircraft. It defines the satellite data unit in a 6 MCU form factor. It also provides a summary description of each avionics component that would comply with this document. Supplement 14 adds references to ARINC Characteristic 781 and address equipment configurations and functionality associated with SwiftBroadband services.
Standard

SECOND GENERATION AVIATION SATELLITE COMMUNICATION SYSTEM, AIRCRAFT INSTALLATION PROVISIONS

2012-06-21
CURRENT
ARINC761-5
This document defines the characteristics of second generation L-band satellite communication system installations including the avionics equipment defined for Iridium and Inmarsat 2G services. This document provides traditional form, fit, function, and interface standards necessary for the installation of Satcom avionics equipment for all types of aircraft. It also provides a description of each envisioned avionics component that would comply with this Characteristic. Supplement 5 removes obsolete service and system provisions, and adds references to ARINC Characteristic 791 for Ku-band antenna installation details.
Standard

AIRCRAFT COMMUNICATIONS ADDRESSING AND REPORTING SYSTEM (ACARS)

2012-02-24
CURRENT
ARINC724B-6
This standard describes the 724B version of the airborne components of ACARS, and is intended for use in conjunction with VHF radio equipment existing on the plane. This ACARS enhancement improves the ability of the system to provide air-to-ground and ground-to-air data communications.
Standard

AIRCRAFT DATA NETWORK PART 8 INTEROPERATION WITH NON-IP PROTOCOLS AND SERVICES

2010-11-12
CURRENT
ARINC664P8-1
This Specification was written to support future aeronautical applications and services beyond those using Transmission Control Protocol/Internet Protocol (TCP/IP). The initial focus is to support air/ground applications using the Aeronautical Telecommunications Network (ATN). These include Controller-Pilot Data Link Communication (CPDLC), Flight Information System (FIS), and Context Management Application (CMA). Supplement 1 was written to allow interoperation with non-IP protocols and services and upper layer services with respect to the OSI reference model. Supplement 1 reflects ICAO Aeronautical Communication Panel recommendations.
Standard

AIRCRAFT DATA NETWORK PART 7 AVIONICS FULL-DUPLEX SWITCHED ETHERNET NETWORK

2009-09-23
CURRENT
ARINC664P7-1
The purpose of this document is to define a deterministic network: Avionics Full Duplex Switched Ethernet (AFDX). AFDX is a trademark of Airbus and is used with permission. This document also highlights the additional performance requirements of avionics systems within the context of AFDX.
Standard

AIRCRAFT DATA NETWORK PART 3 INTERNET-BASED PROTOCOLS AND SERVICES

2009-02-16
CURRENT
ARINC664P3-2
This specification defines Network and Transport layer provisions for data networks that are installed on commercial aircraft. The definitions are based on Internet Engineering Task Force (IETF) Internet protocol and service standards that have been published as Request for Comments (RFC). In some cases the protocols and services are tailored for use on board aircraft. The specification identifies two types of networks: First, Compliant Aircraft Data Network, which operates fully within the applicable Internet specifications. Second, Profiled Aircraft Data Network, in which one or more industry standard protocols have been extended to address the unique environment of aircraft installations. Within the specification, the functionality of Internet protocols and services are defined with the intent that interoperability of components connected to onboard data networks can be achieved without undue restrictions on the component designer.
Standard

AIRCRAFT DATA NETWORK, PART 2 - ETHERNET PHYSICAL AND DATA LINK LAYER SPECIFICATION

2009-01-16
CURRENT
ARINC664P2-2
This specification provides Ethernet physical parameters and data link layer specifications for use in a commercial aircraft environment. This specification provides general and specific guidelines for the use of IEEE 802.3 compliant Ethernet, 2000 edition. Physical layer and Medium Access Control (MAC) sub-layers are expected to comply with the Open System Interconnection (OSI) Reference Model to enable maximal utilization of off-the-shelf components, both hardware and software, for aviation use. The Ethernet Physical layer specification defines the electrical and optical parameters for the 10BASE-T, 100BASE-TX, and 100BASE-FX Ethernet implementations. This specification references ARINC Specification 600: Air Transport Avionics Equipment Interfaces for definition of copper-based implementations of the Ethernet Physical layer.
Standard

AIRCRAFT NETWORK SERVER SYSTEM (NSS) FUNCTIONAL DEFINITION

2008-12-09
CURRENT
ARINC821
This document describes a collection of Aircraft Network Services (ANS) and Network Server System (NSS) functions that are suitable for installation in all types of aircraft. It defines network services intended for both aircraft and cabin installations that will manage and maintain the NSS in a common way. This document describes methods for the aircraft to effectively communicate with ground-based information management systems.
X