Refine Your Search

Topic

Search Results

Standard

Thermal Flow Control Valve Nomenclature and Application

2018-11-02
CURRENT
J3142_201811
The purpose of this SAE Information Report is to define common industry terminology and nomenclature relative to thermal flow control valves and to describe common thermal flow control valve applications in automotive, highway truck, mobile construction equipment, and industrial applications. This document is primarily directed at internal combustion engine or electric powered applications and the downstream systems to which power is provided, such as transmissions, hydraulics, air compression, etc. The information contained herein does not constitute an SAE Standard.
Standard

Radiator Nomenclature

2018-10-09
CURRENT
J631_201810
This SAE Recommended Practice documents nomenclature in common use for various types of radiator and radiator core construction, as well as for various radiator-related accessories.
Standard

Radiator Caps and Filler Necks

2018-04-05
CURRENT
J164_201804
This SAE Standard was developed primarily for passenger car and truck application, but may be used in marine, industrial, and similar applications.
Standard

Engine Cooling Fan Structural Analysis

2017-06-01
CURRENT
J1390_201706
Three levels of fan structural analysis are included in this practice: a Initial Structural Integrity b In-vehicle Testing c Durability (Laboratory) Test Methods The Initial Structural Integrity section describes analytical and test methods used to predict potential resonance and, therefore, possible fatigue accumulation. The In-vehicle (or machine) section enumerates the general procedure used to conduct a fan strain gage test. Various considerations that may affect the outcome of strain gage data have been described for the user of this procedure to adapt/discard depending on the particular application. The Durability Test Methods section describes the detailed test procedures for a laboratory environment that may be used depending on type of fan, equipment availability, and end objective. The second and third levels build upon information derived from the previous level.
Standard

Oil Cooler Application Testing and Nomenclature

2017-03-21
CURRENT
J1468_201703
This SAE Recommended Practice is applicable to oil-to-air and oil-to-coolant oil coolers installed on mobile or stationary equipment and provides a glossary of oil cooler nomenclature. Such oil coolers may be used for the purpose of cooling automatic transmission fluid, hydraulic system oil, retarder system fluid, engine oil, etc. This document outlines the methods of procuring the test data to determine the operating characteristics of the oil cooling system and the interpretation of the results.
Standard

Electric Drive Cooling Fan Motor Mounting

2016-03-11
CURRENT
J2873_201603
This SAE Recommended Practice is applicable to Electric Drive Cooling Fan Assemblies used in Light Duty vehicle cooling systems (typically, passenger cars and light duty trucks). This document outlines the Electric Drive Cooling Fan Motor Mounting interface characteristics such that a common standard is possible.
Standard

Laboratory Testing of Light Duty Vehicle Electric Cooling Fan Assemblies for Airflow Performance

2014-08-28
HISTORICAL
J2867_201408
This SAE Recommended Practice is intended for use in testing and evaluating the performance of Light Duty automotive electric engine cooling fans. These Electric Cooling Fan (ECF) Assemblies are purchased by Light Duty Truck and Passenger Car OEM’s from suppliers. They are purchased as complete assemblies, consisting of the fan(s), motor(s), and shroud (see Figure 1); this Recommended Practice will only consider such complete assemblies. Some purchased assemblies using brush-type motors may also include control devices such as power resistors or pulse width modulation (PWM) electronics for speed control. In the case of brushless motor technology, the controller is an integral part of the motor where it also performs the commutation process electronically. The performance measurement would include fan output in terms of airflow and pressure, and fan input electric power in terms of voltage and current.
Standard

Radiator Nomenclature

2013-11-07
HISTORICAL
J631_201311
This SAE Standard documents standard nomenclature in common use for various types of radiator and radiator core construction, as well as for various radiator-related accessories.
Standard

Heavy Duty Vehicle Cooling Test Code

2012-09-17
HISTORICAL
J1393_201209
This document supersedes SAE J819 - Engine Cooling System Field Test. The purpose of this SAE Recommended Practice is to establish a testing procedure to determine the performance capability of engine cooling systems, including charge air coolers, on heavy-duty vehicles with liquid-cooled internal combustion engines. The definition of heavy vehicles for this document includes, but is not limited to, on- and off-highway trucks, cranes, drill rigs, construction, forestry and agricultural machines. Vehicles equipped with side or rear-mounted radiators may require an alternate procedure of a towing dynamometer because of peculiar aerodynamics. Testing is generally conducted to determine compliance with cooling criteria established by the engine manufacturer or the end product user to meet a desired engine reliability goal.
Standard

Radiator Caps and Filler Necks

2012-07-20
HISTORICAL
J164_201207
This SAE Standard was developed primarily for passenger car and truck application, but may be used in marine, industrial, and similar applications.
Standard

Engine Cooling Fan Structural Analysis

2012-01-09
HISTORICAL
J1390_201201
Three levels of fan structural analysis are included in this practice: 1 Initial Structural Integrity 2 In-vehicle Testing 3 Durability Test Methods The Initial Structural Integrity section describes analytical and test methods used to predict potential resonance and, therefore, possible fatigue accumulation. The In-vehicle (or machine) section enumerates the general procedure used to conduct a fan strain gage test. Various considerations that may affect the outcome of strain gage data have been described for the user of this procedure to adapt/discard depending on the particular application. The Durability Test Methods section describes the detailed test procedures that may be used depending on type of fan, equipment availability, and end objective. Each of the previous levels builds upon information derived from the previous level. Engineering judgment is required as to the applicability of each level to a different vehicle environment or a new fan design.
Standard

Oil Cooler Application Testing and Nomenclature

2010-10-01
HISTORICAL
J1468_201010
This SAE Recommended Practice is applicable to oil-to-air and oil-to-water oil coolers installed on mobile or stationary equipment and provides a glossary of oil cooler nomenclature. Such oil coolers may be used for the purpose of cooling automatic transmission fluid, hydraulic system oil, retarder system fluid, etc. This document outlines the methods of procuring the test data to determine the operating characteristics of the oil cooling system and the interpretation of the results.
Standard

Electric Drive Cooling Fan Motor Mounting

2010-07-08
HISTORICAL
J2873_201007
This SAE Recommended Practice is applicable to Electric Drive Cooling Fan Assemblies used in Light Duty vehicle cooling systems (typically, passenger cars and light duty trucks). This document outlines the Electric Drive Cooling Fan Motor Mounting interface characteristics such that a common standard is possible.
Standard

Automotive and Light Truck Engine Coolant Concentrate-Ethylene Glycol Type

1996-03-01
HISTORICAL
J1034_199603
This SAE Recommended Practice applies to engine coolant concentrate, ethylene glycol base, for use in automotive and light truck engine cooling systems. This document applies to engine coolant concentrates for aluminum compatible requirements. Please refer to SAE J1941 and J2307 DRAFT for coolants used in heavy-duty diesel engine cooling systems. For further information on engine coolants, see SAE J814 and J2306.
Standard

Heavy Duty Vehicle Cooling Test Code

1994-03-01
HISTORICAL
J1393_199403
This document supersedes SAE J819 - Engine Cooling System Field Test. The purpose of this SAE Recommended Practice is to establish a testing procedure to determine the performance capability of engine cooling systems, including charge air coolers, on heavy-duty vehicles with liquid-cooled internal combustion engines. The definition of heavy vehicles for this document includes, but is not limited to, on- and off-highway trucks, cranes, drill rigs, construction, forestry and agricultural machines. Vehicles equipped with side or rear-mounted radiators may require an alternate procedure of a towing dynamometer because of peculiar aerodynamics. Testing is generally conducted to determine compliance with cooling criteria established by the engine manufacturer or the end product user to meet a desired engine reliability goal.
Standard

Automobile and Light Truck Engine Coolant Concentrate Ethylene Glycol Type

1991-04-01
HISTORICAL
J1034_199104
This SAE Recommended Practice applies to engine coolant concentrate, ethylene glycol base, for use in automotive and light truck engine cooling systems. This document applies to engine coolant concentrates for aluminum compatible requirements. Please refer to SAE J1941 and J2307 DRAFT for coolants used in heavy-duty diesel engine cooling systems. For further information on engine coolants, see SAE J814 and J2306.
Standard

Automobile and Light Truck Engine Coolant Concentrate Ethylene Glycol Type

1988-07-01
HISTORICAL
J1034_198807
This SAE Recommended Practice applies to engine coolant concentrate, ethylene glycol base, for use in automotive and light truck engine cooling systems. This document applies to engine coolant concentrates for aluminum compatible requirements. Please refer to SAE J1941 and J2307 DRAFT for coolants used in heavy-duty diesel engine cooling systems. For further information on engine coolants, see SAE J814 and J2306.
Standard

Engine Cooling Fan Structural Analysis

1982-04-01
HISTORICAL
J1390_198204
Three levels of fan structural analysis are included in this practice: 1. Initial Structural Integrity 2. In-vehicle Testing 3. Durability Test Methods The Initial Structural Integrity section describes analytical and test methods used to predict potential resonance and, therefore, possible fatigue accumulation. The In-vehicle (or machine) section enumerates the general procedure used to conduct a fan strain gage test. Various considerations that may affect the outcome of strain gage data have been described for the user of this procedure to adapt/discard depending on the particular application. The Durability Test Methods section describes the detailed test procedures that may be used depending on type of fan, equipment availability, and end objective. Each of the previous levels builds upon information derived from the previous level. Engineering judgment is required as to the applicability of each level to a different vehicle environment or a new fan design.
X