Refine Your Search




Search Results

Technical Paper

An Experimental Study to Evaluate Hydro-/Ice-Phobic Coatings for Icing Mitigation over Rotating Aero-engine Fan Blades

Ice accretion on aero-engines, especially on the fan blades, is the very hazardous icing incident due to the potential performance degradation of jet-engines. In the present study, an experimental investigation was conducted to examine the performance of ice-phobic coatings for jet-engine fan icing mitigation. The experimental study was performed in the unique Icing Research Tunnel at Iowa State University (ISU-IRT) with a scaled engine fan model operated under wet glaze and dry rime ice conditions. To evaluate the effects of anti-icing coatings and to acquire the important details of ice accretion and shedding process on fan blade surfaces, a “phase-locked” imaging technique was applied with a high-resolution imaging system. The power input required to drive the engine fan model rotating at a constant prescribed speed was also measured during the ice accretion experiment.
Technical Paper

Simulation of Ice Particle Breakup and Ingestion into the Honeywell Uncertified Research Engine (HURE)

Numerical solutions have been generated which simulate flow inside an aircraft engine flying at altitude through an ice crystal cloud. The geometry used for this study is the Honeywell Uncertified Research Engine (HURE) which was recently tested in the NASA Propulsion Systems Laboratory (PSL) in January 2018. The simulations were carried out at predicted operating points with a potential risk of ice accretion. The extent of the simulation is from upstream of the engine inlet to downstream past the strut in the core and bypass. The flow solution is produced using GlennHT, a NASA in-house code. A mixing plane approximation is used upstream and downstream of the fan. The use of the mixing plane allows for steady state solutions in the relative frame. The flow solution is then passed on to LEWICE3D for particle trajectory, impact and breakup prediction. The LEWICE3D code also uses a mixing plane approximation at the boundaries upstream and downstream of the fan.
Technical Paper

An Ice Shedding Model for Rotating Components

A CFD simulation methodology is presented to evaluate the ice that sheds from rotating components. The shedding detection is handled by coupling the ice accretion and stress analysis solvers to periodically check for the propagation of crack fronts and possible detachment. A novel approach for crack propagation is highlighted where no change in mesh topology is required. The entire computation from flow to impingement, ice accretion and crack analysis only requires a single mesh. The accretion and stress module are validated individually with published data. The analysis is extended to demonstrate potential shedding scenarios on three complex industrially-relevant 3D cases: a helicopter blade, an engine fan blade and a turboprop propeller. The largest shed fragment will be analyzed in the context of FOD damage to neighboring aircraft/component surfaces.
Technical Paper

A Study on NVH Performance Improvement of TPE Air Intake Hose Based on Optimization of Design and Material

Environmental and fuel economy regulations (Eu 6d and WLTP RDE) on automobiles have been tightened recently. To counter this regulation, the global automobile industry is focusing on weight reduction, fuel efficient turbo charger, cooled EGR, thermal management, low friction and so on. However, the high-speed turbocharger makes turbulence, and resulting in airflow noise. This noise is transmitted indoor through the air intake system, which adversely affects the vehicle's competitiveness. Therefore, for turbo engine, it is essential to reduce the noise of the air intake system. The air intake system consists of air cleaner, air filter, air intake hose and air duct. The air flow noise of turbo-engine is mainly the emission noise emitted from the walls of air intake system. And the transfer path of turbo noise is in order of air intake hose, air cleaner and air duct. Therefore, it is effective to reduce the noise of the air intake hose located at the beginning of noise transfer path.

Moisture Transmission Test Procedure--Hydraulic Brake Hose Assemblies

This SAE Recommended Practice is intended for all vehicle hydraulic brake hoses. It is an accelerated test which is intended to provide the user with a method of comparing the ability of hydraulic brake hose designs to retard the ingress of moisture into brake fluid. This document specifies a laboratory performance requirement. ASTM D 1364 interlaboratory reproducibility and correlation of data have not been defined, nor has correlation been established between field vehicle brake fluid moisture content and data obtained by this document.

Using a System Reliability Model to Optimize Maintenance Costs A Best Practices Guide

SAE JA6097 (“Using a System Reliability Model to Optimize Maintenance”) shows how to determine which maintenance to perform on a system when that system requires corrective maintenance to achieve the lowest long-term operating cost. While this document may focus on applications to Jet Engines and Aircraft, this methodology could be applied to nearly any type of system. However, it would be most effective for systems that are tightly integrated, where a failure in any part of the system causes the entire system to go off-line, and the process of accessing a failed component can require additional maintenance on other unrelated components.

Hose Assembly, Polytetrafluoroethylene (PTFE), Low Pressure, 450°F and Fireproof, Procurement Specification For

This SAE Aerospace Standard (AS) covers the requirements for polytetrafluoroethylene (PTFE) hose assemblies for use in aerospace fuel and lubricating oil systems at temperatures between -67 and 450°F and at operating pressures per Table 1. The hose assemblies are also suitable for use within the same temperature and pressure limitations in aerospace pneumatic systems where some gaseous diffusion through the wall of the PTFE liner can be tolerated. The use of these hose assemblies in pneumatic storage systems is not recommended. In addition, installations in which the limits specified herein are exceeded, or in which the application is not covered specifically by this document, for example oxygen, shall be subject to the approval of the purchaser.

Glossary of Engine Cooling System Terms

The objective of this glossary is to establish uniform definitions of parts and terminology for engine cooling systems. Components included are all those through which engine coolant is circulated: water pump, engine oil cooler, transmission and other coolant-oil coolers, charge air coolers, core engine, thermostat, radiator, external coolant tanks, and lines connecting them.