Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Influence of Engine Speed on Autoignition and Combustion Characteristics in a Supercharged HCCI Engine

2017-11-05
2017-32-0090
Homogeneous Charge Compression Ignition (HCCI) combustion has attracted widespread interest because it achieves high efficiency and can reduce particulate matter (PM) and nitrogen oxide (NOx) emissions simultaneously. However, because HCCI engines lack a physical means of initiating ignition, it is difficult to control the ignition timing. Another issue of HCCI engines is that the combustion process causes the cylinder pressure to rise rapidly. The time scale is also important in HCCI combustion because ignition depends on the chemical reactions of the mixture. Therefore, we investigated the influence of the engine speed on autoignition and combustion characteristics in an HCCI engine. A four-stroke single-cylinder engine equipped with a mechanically driven supercharger was used in this study to examine HCCI combustion characteristics under different engine speeds and boost pressures.
Journal Article

A Study of an HCCI Engine Operating on a Blended Fuel of DME and Methane

2011-11-08
2011-32-0522
In this study, experiments were conducted using a blend of two types of fuel with different ignition characteristics. One was dimethyl ether (DME) that has a high cetane number, autoignites easily and displays low-temperature oxidation reaction mechanisms; the other was methane that has a cetane number of zero and does not autoignite easily. A mechanically driven supercharger was provided in the intake pipe to adjust the intake air pressure. Moreover, flame light in the combustion chamber was extracted using a system for observing light emission that occurred in the space between the cylinder head and the cylinder and in the bore direction of the piston crown. The results of previous studies conducted with a supercharged HCCI engine and a blended fuel of DME and methane have shown that heat release of the hot flame is divided into two stages and that combustion can be moderated by reducing the peak heat release rate (HRR).
X