Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Vehicle Architecture for Hybrid, Electric, Automated, and Shared Vehicle Design

2024-09-10
Electric and hybrid vehicle engineers and designers are faced with the important issue of how to adequately configure required powertrain system components to achieve needed performance, occupant accommodation, and operational objectives. This course enables participants to fully comprehend vehicle architectural/configurational design requirements to enable efficient structural design, effective packaging of required components, and efficient vehicle performance for shared and autonomous operation. The importance of integrating these design requirements with specific vehicle user needs and expectations will be emphasized.
Technical Paper

Electromagnetic Compatibility Assessment of Electric Vehicles During DC-Charging with European Combined Charging System

2024-07-02
2024-01-3008
The ongoing energy transition will have a profound impact on future mobility, with electrification playing a key role. Battery electric vehicles (EVs) are the dominant technology, relying on the conversion of alternating current (AC) from the grid to direct current (DC) to charge the traction battery. This process involves power electronic components such as rectifiers and DC/DC converters operating at high switching frequencies in the kHz range. Fast switching is essential to minimize losses and improve efficiency, but it might also generate electromagnetic interferences (EMI). Hence, electromagnetic compatibility (EMC) testing is essential to ensure reliable system operations and to meet international standards. During DC charging, the AC/DC conversion takes place off-board in the charging station, allowing for better cooling and larger components, resulting in increased power transfer, currently up to 350 kW.
Technical Paper

Approach for an Assistance System for E-Bikes to Implement Rider-Adaptive Support

2024-07-02
2024-01-2979
When riding an e-bike, riders are faced with the question of whether there is enough energy left in the battery to reach the destination with the desired level of support. E-bike users therefore have an existential range anxiety. Specifically, this describes the fear that the battery charge will be exhausted before there is an opportunity to recharge it and that it will no longer be possible to use the electric support. However, e-bike riders have so far had to decide for themselves whether the available battery charge is sufficient for riding the planned route or whether the desired destination can be reached. In this context, the challenge is to decide how much support can be used so that an appropriate amount of effort can be achieved for the entire journey. In order to assist e-bike riders with this problem, the objective of this paper is to present an approach towards an assistance system that provides rider-adaptive support over the entire journey of a defined route.
Technical Paper

Optimization-Based Battery Thermal Management for Improved Regenerative Braking in CEP Vehicles

2024-07-02
2024-01-2974
The courier express parcel service industry (CEP industry) has experienced significant changes in the recent years due to increasing parcel volume. At the same time, the electrification of the vehicle fleets poses additional challenges. A major advantage of battery electric CEP vehicles compared to internal combustion engine vehicles is the ability to regenerate the kinetic energy of the vehicle in the frequent deceleration phases during parcel delivery. If the battery is cold the maximum recuperation power of the powertrain is limited by a reduced chemical reaction rate inside the battery. In general, the maximum charging power of the battery depends on the state of charge and the battery temperature. Due to the low power demand for driving during CEP operation, the battery self-heating is comparably low under cold ambient conditions. Without active conditioning of the battery, potential regenerative energy is lost as a result of the cold battery.
Technical Paper

Measurements in the Recirculation Path of a Fuel Cell System and Extension to Gas Analysis of the Anode Gas Mixture

2024-07-02
2024-01-3009
When using "green" hydrogen, fuel cell technology plays a key role in emission-free mobility. A powertrain based on fuel cells (FC) shows its advantages over battery-electric powertrains when the requirement profile primarily demands high performance over a longer period of time, high flexible availability and short refueling times. In addition, FC achieves higher effi-ciencies than the combustion of hydrogen in a gas engine, meaning that the chemical energy is used more efficiently than with established combustion engines. When using FC technology, numerous companies in Baden-Württemberg can contribute their specific expertise from the traditional automotive construction and supplier business. This includes auxiliary units in the air (cathode) and hydrogen (anode) path, such as the air com-pressor, the H2 recycling pump, humidifier, cooling system, power electronics, valve and pressure tank technology as well as components of the fuel cell stack itself.
Technical Paper

Simulation of Hydrogen Combustion in Spark Ignition Engines Using a Modified Wiebe Model

2024-07-02
2024-01-3016
Due to its physical and chemical properties, hydrogen is an attractive fuel for internal combustion engines, providing grounds for studies on hydrogen engines. It is common practice to use a mathematical model for basic engine design and an essential part of this is the simulation of the combustion cycle, which is the subject of the work presented here. One of the most widely used models for describing combustion in gasoline and diesel engines is the Wiebe model. However, for cases of hydrogen combustion in DI engines, which are characterized by mixture stratification and in some cases significant incomplete combustion, practically no data can be found in the literature on the application of the Wiebe model. Based on Wiebe's formulas, a mathematical model of hydrogen combustion has been developed. The model allows making computations for both DI and PFI hydrogen engines. The parameters of the Wiebe model were assessed for three different engines in a total of 26 operating modes.
Technical Paper

Next-gen battery strategies 2027+: Potentials and challenges for future battery designs and diversification in product portfolios to serve a large bandwidth of market applications

2024-07-02
2024-01-3018
The pace of innovations in battery development is revolutionizing the landscape and opportunities for energy storage applications leading to a stronger market segmentation enabling a better suitability to fulfill specific application requirements. For automotive applications, several approaches to increase energy densities, to improve fast charging performance, and to reduce cost on a pack level are considered. Among them, a promising example is the direct integration of battery cells into the battery pack (Cell-to-pack; CTP) or vehicle (Cell-to-chassis, CTC) to increase energy densities and to reduce costs, as already commercialized by Tesla, CATL and others. In the pack development, especially Asian players are one of the frontrunners, where e.g., hybrid cell battery systems with a mixture of cells with different cathode chemistries as introduced by NIO, are experiencing a high interest of the market.
Technical Paper

Low NOx Emissions Performance after 800,000 Miles Aging Using CDA and an Electric Heater

2024-07-02
2024-01-3011
Engine and aftertreatment solutions have been identified to meet the upcoming ultra-low NOX regulations on heavy duty vehicles in the United States and Europe. These standards will require changes to current conventional aftertreatment systems for dealing with low exhaust temperature scenarios while increasing the useful life of the engine and aftertreatment system. Previous studies have shown feasibility of meeting the US EPA and California Air Resource Board (CARB) requirements. This work includes a 15L diesel engine equipped with cylinder deactivation (CDA) and an aftertreatment system that was fully DAAAC aged to 800,000 miles. The aftertreatment system includes an e-heater (electric heater), light-off Selective Catalytic Reduction (LO-SCR) followed by a primary aftertreatment system containing a DPF and SCR.
Technical Paper

Supercharger Boosting on H2 ICE for Heavy Duty applications

2024-07-02
2024-01-3006
Commercial vehicle powertrain is called to respect a challenging roadmap for CO2 emissions reduction, quite complex to achieve just improving technologies currently on the market. In this perspective alternative solutions are gaining interest, and the use of green H2 as fuel for ICE is considered a high potential solution with fast and easy adoption. NOx emission is still a problem for H2 ICE and can be managed operating the engine with lean air fuel ratio all over the engine map. This combustion strategy will challenge the boosting system as lean H2 combustion will require quite higher air flow compared to diesel for the same power density in steady state. Similar problem will show up in transient response particularly when acceleration starts from low load and the exhaust gases enthalpy is very poor and insufficient to spin the turbine. The analysis presented in this paper will show and quantify the positive impact that a supercharger has on both the above mentions problems.
Technical Paper

Traceability E-Fuels 2035

2024-07-02
2024-01-3022
EU legislation provides for only local CO2 emission-free vehicles to be allowed in individual passenger transport by 2035. In addition, the directive provides for fuels from renewable sources, i.e. defossilised fuels. This development leads to three possible energy sources or forms of energy for use in individual transport. The first possibility is charging with electricity generated from renewable sources, the second possibility is hydrogen generated from renewable sources or blue production path. The third possibility is the use of renewable fuels, also called e-fuels. These fuels are produced from atmospheric CO2 and renewable hydrogen. Possible processes for this are, for example, methanol or Fischer-Tropsch synthesis. The production of these fuels is very energy-intensive and large amounts of renewable electricity are needed.
Technical Paper

Impact of AdBlue Composition and Water Purity on Particle Number Increase

2024-07-02
2024-01-3012
Previous studies have shown that dosing AdBlue into the exhaust system of diesel engines to reduce nitrogen oxides can lead to an increase in the number of particles (PN). In addition to the influencing factors of exhaust gas temperature, exhaust gas mass flow and dosing quantity, the dosed medium itself (AdBlue) is not considered as a possible influence due to its regulation in ISO standard 22241. However, as the standard specifies limit value ranges for the individual regulated properties and components for newly sold AdBlue, in reality there is still some margin in the composition. This paper investigates the particle number increase due to AdBlue dosing using several CPCs. The increase in PN is determined by measuring the number of particles after DPF and thus directly before dosing as well as tailpipe. Several AdBlue products from different sources and countries are measured and their composition is also analyzed with regard to the limit values regulated in the standard.
X