Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

An alternate cost effective material for rocker arm for heavy commercial vehicles

2019-11-21
2019-28-2550
Rocker arm in internal combustion engine is very important part which transfer the cam motion and force to the valve. In heavy commercial vehicles, the engine components are design for an infinite life (considerable higher than other components). Recently industries are working for light weight and optimized cost material. Hence it is required to have an optimized cost effective design of rocker arm without affecting its performance. A rocker arm should meet the stiffness and strength requirement. The objective of this study is to find out the alternate material for rocker arm which can provide the similar strength & stiffness as conventional rocker arm material. To achieve the performance and cost target, alternate material cast iron has been evaluated for rocker arm. Cast iron is lighter than the forged steel rocker arm, also it has a good frictional characteristic. Further bush is eliminated from the rocker arm assembly due to self-lubricant property of the cast iron rocker arm.
Technical Paper

Aerodynamic Analysis of a Passenger Car to Reduce Drag using Active Grill Shutters and Active Air Dams

2019-11-21
2019-28-2408
Active aerodynamics can be defined as the concept of reducing drag by making real-time changes to certain devices such that it modifies the airflow around a vehicle. Using such devices also have the added advantages of improving ergonomics and performance along with aesthetics. A significant reduction in fuel consumption can also be seen when using such devices. The objective of this work is to reduce drag acting on a passenger car using the concept of active aerodynamics with grill shutters and air dams. First, analysis has been carried out on a baseline passenger car and further simulated using active grill shutters and air dams for vehicle speed ranging from 60 kmph to 120 kmph, with each active device open from 0° to 90°. The improved model obtained is then subjected to variations in yaw angle ranging from -18° to +18°. The optimized model is then validated for a scaled down prototype in a wind tunnel.
Technical Paper

Effect of variable payload on Vehicle dynamics of Passenger buses in Indian usage conditions

2019-11-21
2019-28-2411
A high impetus from Government on road infrastructure development, is giving a fillip to passenger CV space. This has resulted in making the passenger CV segment lucrative enough, thereby pulling in many operators in the business. The quality of road has immensely improved over a decade, as a result of which the average speed and hence the quantum of distance covered by passenger buses has increased significantly. People are preferring to travel in buses over trains, owing to at par ticket cost, high availability, reduced travel time and also improved level of comfort. Aligned to the market need and the trend, OEM's are offering buses with capable powertrains to cater the need of speed, reduced trip time as well as a lot of attention is also being paid to tune in the comfort level for long hauls. A big chunk of passenger travel is catered by the bus operators especially during major festivals in India.
Technical Paper

The Dynamic Stability Index Calculator for Agricultural Tractors Equipped with Front End Loader

2019-11-21
2019-28-2420
The study aims to evaluate the lateral stability of tractor-front end loader system in consideration with difficult work conditions based on various loader bucket lifting heights from ground while driving a system on transversal slopes. In the proposed method the centre of gravity of tractor-front end loader system was calculated and analysed to evaluate the transversal overturning of the system. This overturning of the system was analysed by applying mathematical equations presented in past studies and compared with the newly developed prediction model for 3 test tractors of 25 HP. The excel spreadsheet comprised of mathematical equations used to calculate the Tractor Stability Index (TSI) on transverse slope with respect to loader bucket height and payload in dynamic condition. A criterion has been defined to categorize the Tractor Stability Index (TSI) poor to excellent on a scale of 0 to 4 where <0 being the very poor, 0-2 Poor, 2-4 Good and >4 being the excellent.
Technical Paper

Suspension hard points optimisation

2019-11-21
2019-28-2419
Objective This paper explores the usage of Altair simulation driven optimisation process, Front Suspension hard points of a sedan Car model are optimised for specific target toe curves using MotionView, MotionSolve and HyperStudy This process gives the optimal hard point values to match the target curves without much iterations. Methodology Parametric Multibody model of the front end of sedan is built in MotionView. To Carry out optimisation HyperStudy is used where few of the suspension hard points which affect the toe curves are chosen as design variable. For the chosen Design variables upper and lower bound limits are specified. Ride, Roll and lateral force tests are performed. Optimisation is performed using HyperStudy where it iterates the suspension hard points to match the target toe curves. Each iteration response can be visualized in HyperStudy and can be compared with the target toe curve.
Technical Paper

APPLICATION ORIENTED HYBRIDIZED DYNAMIC MODELS OF POWERTRAIN CONTROL FOR CONNECTED VEHICLES – A CASE STUDY ON TURBOCHARGER CONTROL

2019-11-21
2019-28-2443
In a connected vehicle environment, the engine drive cycles operate in synchronized and regulated manner. This requires smooth transitions for improved CO_2 footprint. To arrive at this, there is need for intelligent and faster airpath control at transients. Authors aim to model and control every actuator of a coupled system in a synchronized manner with faster dynamic response. The turbocharger control is vital and forms heart of the system; This demands accurate position prediction of VTG. Deriving a control law for turbocharger is challenging due to the hybridized nature of turbocharger models in engine management system. It becomes extremely critical to estimate accurately, the position of VTG without introduction of any sensing devices. The control engineer always need to solve the trade-off between the controller performance KPI’s – rise time, transient response, controllability, observability and capability – stability and dynamics response etc.
Technical Paper

Experimental investigation on performance and emission characteristics of a single cylinder CRDI engine fuelled with a diesel-methanol blend.

2019-11-21
2019-28-2380
The diesel engine is widely used for its high thermal efficiency and better fuel conversion efficiency. However, increasing usage of petroleum fuel and environmental degradation motivates to use renewable biofuels as a replacement to conventional diesel. Biofuels produced from non-edible sources can be used as a partial substitute of diesel for the significant growth of fuel economy and reduction of environmental pollution. Methanol can be implemented as a blended fuel in the diesel without affecting engine design. In this study, the effect of diesel methanol blends and injection parameters such as fuel injection pressure (FIP)and start of injection (SOI) on a common rail direct injection (CRDI) diesel engine performance and emission were investigated. Four blends were prepared by mixing diesel with methanol (5%, 10%, 15% and 20% by mass) and adding a certain amount of oleic acid and iso-butanol to get a stable blend.
Technical Paper

Effect of Gasoline-Ethanol blends and CNG on GDI engine to reduce cost of vehicle ownership

2019-11-21
2019-28-2379
A major challenge for combustion development is to optimize the engine for improved fuel economy, reduce greenhouse gases. Stringent CAFÉ and emission norms require the customer to pay higher capital on vehicles. To offset the cost of ownership- cheaper and alternative energy sources are being explored. Ethanol blend with regular Gasoline and CNG are such alternative fuels. The study was carried on turbo-charged gasoline direct injection engine. The effect of ethanol on engine and vehicle performance is estimated and simulated numerically. The work is split into three stages: first the base 1D engine performance model was calibrated to match the experimental data. In parallel, vehicle level Simulink model was built and calibrated to match the NEDC cycle performance. Second, the thermal efficiency of the ethanol blend is calculated as a linear function of theoretical Otto cycle efficiency.
Technical Paper

Replacing twin electric fan radiator with Single fan radiator

2019-11-21
2019-28-2381
Downsizing is one of the crucial activities being performed by every automotive engineering organization. The main aim is to reduce – Weight, CO2 emissions and achieve cost benefit. All this is done without any compromise on performance requirement or rather with optimization of system performance. This paper evaluate one such optimization, where-in radiator assembly with two electric fan is targeted for downsizing for small commercial vehicle application. The present two fan radiator is redesigned with thinner core and use of single fan motor assembly. The performance of the heat exchanger is tested for similar conditions back to back on vehicle and optimized to get the balanced benefit in terms of weight, cooling performance and importantly cost. This all is done without any modification in vehicle interface components except electrical connector for fan. The side members and brackets design is also simplified to achieve maximum weight reduction.
Technical Paper

Development of a Graphical User Interface (GUI) Based Tool for Vehicle Dynamics Evaluation

2019-11-21
2019-28-2397
Title Development of a Graphical User Interface (GUI) Based Tool for Vehicle Dynamics Evaluation Authors Mr. Shubham Kedia, Dr. Divyanshu Joshi, Dr. Muthiah Saravanan Mahindra Research Valley, Mahindra & Mahindra, Chennai Objective Objective metrics for evaluation of major vehicle dynamics performance attributes i.e. ride, handling and steering are required to compare, validate and optimize dynamic behavior of vehicles. Some of these objective metrics are recommended and defined by ISO and SAE, which involve data processing, statistical analysis and complex mathematical operations on acquired data, through simulations or experimental testing. Due to the complexity of operations and volume of data, evaluation is often time consuming and tedious. Process automation using existing tools such as MS Excel, nCode, Siemens LMS, etc. includes several limitations and challenges, which make it cumbersome to implement.
Technical Paper

Transient Response Analysis and Synthesis of an FSAE Vehicle using Cornering Compliance

2019-11-21
2019-28-2400
OBJECTIVE Race vehicles are designed to achieve higher lateral acceleration arising at cornering conditions. A focused study on the steady state handling of the car is essential for the analysis of such conditions. The transient response analysis of the car is also equally important to achieve best driver-car relationship and to quantify handling in the range suitable for a racing car. This research aims to investigate the design parameters responsible for the transient characteristics and optimize those design parameters. This research work examines the time-based analysis of the problem to truly capture the non-linear dynamics. Apart from tires, chassis can be tuned to optimize vehicle handling and hence the response times. METHODOLOGY To start with, the system is modelled with governing parameters and simulation is carried out to set baseline configurations. Steady state and transient handling simulations run independent of each other with independent logic, coded on MATLAB.
Technical Paper

Methodology for failure simulation Using 4 corner 6 DOF Road load simulator of Overhanging Components: An Experimental Approach

2019-11-21
2019-28-2404
Nowadays, Road Load Simulators are used by automobile companies to reproduce the accurate and multi axial stresses in test parts to simulate the real loading conditions. The road conditions are simulated in lab by measuring the customer usage data by sensors like Wheel Force transducers, accelerometers, displacement sensors and strain gauges on the vehicle body and suspension parts. The acquired data is simulated in lab condition by generating ‘drive file’ using the response of the above mentioned sensors. For generation of proper drive file, not only good FRF but ensuring stability of inverse FRF is also essential. Stability of the inverse FRF depends upon the simulation channels used. In this paper, an experimental approach was applied for focused failure simulation of engine mount, one of such low correlation zone, with known history of failure.
Technical Paper

Correlation of Objective and Subjective test results for Ride comfort with Heave, Pitch and Roll motion for a Passenger Vehicle

2019-11-21
2019-28-2410
Research Objective The importance of evaluating ride comfort with high degrees of accuracy objectively and its correlation with subjective perception is increasing day by day because of the long duration of the driving experience. The complex motion of the vehicle which is the combination of heave, roll and pitch motion is responsible for causing extreme uneasiness to the driver as well as the passenger. In this paper, ride comfort evaluation is done on the highway with similar traffic conditions with the help of Vibration Dose Value Analysis, Suspension Working Space and Ride Diagram methods for two hatchbacks and its correlation with the complex motion like choppiness of the vehicle is established that will help us to enhance the driver ride experience. Methodology The ride testing is performed for two hatchbacks on a highway road with different kinds of terrain ranging from highly uneven road roughness to moderately smooth surface for a speed range of 60-100 kmph.
Technical Paper

Evaluating the Effect of Light Weighting Through Roll Stiffness Change on Vehicle Maneuverability and Stability

2019-11-21
2019-28-2406
Objective To achieve better fuel economy and reduced carbon footprint, OEMs are reducing the sprung and unsprung mass. This translates into a reduction in stiffness which profoundly deteriorates the handling/road holding characteristics of the vehicle. To model these changes in stiffness, modifications are made to suspension roll stiffness at the front and rear. This study compares different configurations of roll stiffness and evaluates vehicle behavior using frequency response characteristics and phase change of Yaw Gain recorded. The present work associates acquired data with subjective feedback to outline the shift in vehicle balance emerging from a variation of sprung and unsprung mass ratio. Methodology To study the frequency response characteristics of the vehicle, the pulse input is chosen for this. An ideal pulse input’s Fourier transform represents constant amplitude over all the frequency ranges. By giving a single input, the system is subjected to a range of frequencies.
Technical Paper

Engine Valve Train Dynamic Analysis using 1-D Simulation Approach

2019-11-21
2019-28-2422
In order to reduce engine development timing and cost, a numerical calculation used to evaluate valve train systems. This paper discusses the work done on kinematic and dynamic analysis of Valve Train (VT) system of a diesel engine by using 1-D Ricardo Valdyn software. The goal is to meet optimum intake, exhaust valve timing requirement, maximize valve open area and 20% overspeed requirement. Valve train model is prepared and inputs like mass and stiffness are estimated from actual weighing and finite element approach respectively. Simulation model is used for predicting valve bounce speed, valve displacement, cam-follower contact stress and strain in the rocker arm. Initially, Kinematic analysis is carried out to study the change in valve motion characteristics such as cam contour radius, tappet contact eccentricity etc. Further to this, dynamic analysis is carried out to assess forces and stresses on valve train components.
Technical Paper

A Machine Learning based Multi-objective Multidisciplinary Design Optimization (MMDO) for Lightweighting the Automotive Structures

2019-11-21
2019-28-2424
The present work involves Machine Learning (ML) based Multi-objective Multidisciplinary Design Optimization (MMDO) for lightweighting the automotive structures. The challenge in deployment of MMDO algorithms in solving real-world automotive structural design problems is the enormous time involved in solving full vehicle finite element models that involve large number of design variables and multiple performance constraints pertaining to vehicle dynamics, durability, crash and NVH domains. With the availability of powerful workstations and using the advanced Computer Aided Engineering (CAE) tools, it has become possible to generate huge sets of simulation data pertaining to multiple domains.
Technical Paper

Optimization of Compression Ratio for DI Diesel Engines for better fuel Economy

2019-11-21
2019-28-2431
Fuel economy is becoming one of the key parameter as it not only accounts for the profitability of commercial vehicle owner but also has impact on environment. Fuel economy gets affected from several parameters of engine such as Peak firing pressure, reduction in parasitic losses, improved volumetric efficiency, improved thermal efficiency etc. Compression ratio is one of key design criteria which affects most of the above mentioned parameters, which not only improve fuel efficiency but also results in improvement of emission levels. This paper evaluates the optimization of Compression ratio and study its effect on Engine performance. The parameters investigated in this paper include; combustion bowl volume in Piston and Cylinder head gasket thickness as these are major contributing factors affecting clearance volume and in turn the compression ratio of engine. Based on the calculation results, an optimum Compression Ratio for the engine is selected.
X