Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Fundamentals of Powertrain Design for Hybrid Electric Vehicles

2020-09-01
Driven by high fuel prices, environmental regulations, and consumer demand, the market for hybrid electric vehicles (HEV) has experienced rapid growth. Every major automotive company produces an HEV. There are approximately fifty different HEV models on the market and over eight million HEVs already sold. In order to meet current and future demands in the HEV and PHEV markets, success will depend on engineering personnel knowing how to develop and manufacture HEV powertrains. This two day seminar will cover the fundamentals of HEV powertrain design.
Training / Education

Fundamental Concepts of Turbocharging Modern Engines Current Practices and Trends

2020-06-16
Turbocharging is rapidly becoming an integral part of many internal combustion engine systems. While it has long been a key to diesel engine performance, it is increasingly seen as an enabler in meeting many of the efficiency and performance requirements of modern automotive gasoline engines. This web seminar will discuss the basic concepts of turbocharging and air flow management of four-stroke engines. The course will explore the fundamentals of turbocharging, system design features, performance measures, and matching and selection criteria.
Technical Paper

Development of high power density diesel engine for constant speed application

2019-11-21
2019-28-2566
Engine up gradation for higher power rating involves challenges that require hardware changes which not only increase cost but also demand higher space. This paper focuses on the up gradation of a 4 cylinder 4.9l CRDi engine from 24.03 kW/L to 30.75 kW/L by adjustment of various parameters to meet both emission and performance targets. Various challenges like higher exhaust temperature, increased peak firing pressure etc. were met using the proper calibration strategy. To meet SFC targets and keep peak firing pressures, exhaust temperatures within desired limits, different operating points for EGR, main injection timing, rail pressure have been optimized. The operating points for optimization were determined by conducting various drive trials on different type of load conditions in test bench. Calibration strategy involved the safe limits of NOx, soot, CO emissions, fuel consumption.pfp, and exhaust temperature.
Technical Paper

Development of low cost closed crankcase ventilation with oil mist separation system on light duty diesel engine.

2019-11-21
2019-28-2578
Currently automotive industry is facing bi-fold challenge of reduction in Greenhouse gases emissions as well as low operating cost. On one hand Emission regulations are getting more and more stringent on other hand there is major focus no customer value proposition. Engine blow by gases are one of the source of Greenhouse gases emission from engine. Blow by gases not only consist of unburn hydrocarbons but also carry large amount of oil. If oil is not separated from these gases, it will led to major oil consumption and hence increase total operating cost of Vehicle. In this paper, effort has been taken to develop a low cost closed crank case ventilation with oil mist separation system on diesel engine.
Technical Paper

Development of Systematic Technique for Design of Electric Motor Mounting System in EV/ HEV Application

2019-11-21
2019-28-2508
Last decade has been era of environmental awareness. Various programs have launched for making devices and appliances eco-friendly. This initiative has lead automobile industry toward hybridization and now total electrification of vehicles. Electric motor produce high frequency vibration along with high torque. Hence it needs to be isolated properly & carefully as these vibrations can damage other automobile parts. Dynamic response of electric motor is different from response of IC engines, so use of engine mounting design method is not suitable for designing mounting system for electric motor mounting system. In design of electric motor mounting, position and orientation of elastomeric mounts plays important role. Mounts used in passive vibration isolation are made up of elastomeric material which are stiff and resilient in nature.
Technical Paper

Computerized Experimental Investigation on Performance & Exhaust Emission of Twin Cylinder Adiabatic Diesel Engine coated with YSZ

2019-11-21
2019-28-2548
The fuel consumption and performance of the Internal Combustion engine is improved by adopting concepts of an adiabatic engine. An experimental investigation for different load conditions is carried out on a water-cooled, constant-speed, twin-cylinder diesel engine. This research is intended to emphasize energy balance and emission characteristic for standard uncoated base engine and adiabatic engine. The inner walls of diesel engine combustion chamber are thermally insulated by a top coat of Metco 204NS yttria-stabilized zirconia (Y2O3ZrO2) powder (YSZ) of a thickness of 350 mm using plasma spray coating technology. The same combustion chamber is also coated with TBC bond coats of AMDRY 962 Nickle chromium aluminum yttria of thickness of 150 mm. The NiCrAlY powder specially designed to produce coating’s resistance to hot corrosion.
Technical Paper

Design and Development of Constant speed diesel engine up to 20 bar BMEP with Inline FIS

2019-11-21
2019-28-2549
Design and Development of Constant speed diesel engine up to 20 bar BMEP with Inline FIS Remesan CB, Sanjay Aurora, Vasundhara V Arde, Vishal Kumar, Om Prakash Yadav, Piyush Ranjan Eicher Engines (A unit of TAFE Motors & Tractors Ltd.) Abstract Development trend in diesel engine is to achieve more power from same size of engine. With increase in brake mean effective pressure (BMEP), the peak firing pressure will also increase. The methodology to control the peak firing pressure on higher BMEP is the major challenge. We achieved better SFC with CPCB II emission targets on a constant speed engine. This study involves a systematic approach to optimize combustion parameters with a cost effective and robust inline Fuel Injection System. This paper deals with the strategies applied and experimental results for achieving the power density of 25kW/lit with Inline FIP by keeping lower Peak firing pressure.
Technical Paper

Design optimization for Engine mount

2019-11-21
2019-28-2540
The mounting of an engine plays important role in controlling the vibration transmissibility, alignment of transmission unit within specific limit. Design of any mounting system mainly depends on stiffness, allowed deformation and transmissibility of force, natural frequency and size w.r.t space constraints etc. This paper helps to study the behavior of engine mount with different layer of rubber with defer stiffness. Firstly the design of front engine mount with single rubber layer according to space constraint in vehicle and then analysis is done to determine the deformation and various results using CAE technique. As per the results, design is modified with varying layer of rubber pad and again analysis is done with same boundary condition followed by improved results.
Technical Paper

TORQUE VECTORING DIFFERENTIAL SYSTEM FOR ELECTRIC VEHICLE

2019-11-21
2019-28-2485
Abstract The electrification of conventional internal combustion engine vehicle is a need of today’s advanced world to reduce the dependency of the transportation sector on the oil and gases. It can be achieved by replacing the engine by an electric motor which is powerful enough to provide required torque. The important requirement for a vehicle to drive in the hilly region with steep corners is proper torque distribution on each wheel which is taken care by the differential system. When the friction between road and wheels are different from left to right, then the wheel with low friction contact will lose its traction on the road. These situations are unfavorable for driving a vehicle on off-road and extrema conditions like driving in muddy roads or on the ice. These problems can be overcome by providing individual power supply system to separate wheels.
Technical Paper

Development of a Graphical User Interface (GUI) Based Tool for Vehicle Dynamics Evaluation

2019-11-21
2019-28-2397
Title Development of a Graphical User Interface (GUI) Based Tool for Vehicle Dynamics Evaluation Authors Mr. Shubham Kedia, Dr. Divyanshu Joshi, Dr. Muthiah Saravanan Mahindra Research Valley, Mahindra & Mahindra, Chennai Objective Objective metrics for evaluation of major vehicle dynamics performance attributes i.e. ride, handling and steering are required to compare, validate and optimize dynamic behavior of vehicles. Some of these objective metrics are recommended and defined by ISO and SAE, which involve data processing, statistical analysis and complex mathematical operations on acquired data, through simulations or experimental testing. Due to the complexity of operations and volume of data, evaluation is often time consuming and tedious. Process automation using existing tools such as MS Excel, nCode, Siemens LMS, etc. includes several limitations and challenges, which make it cumbersome to implement.
Technical Paper

Effect of Gasoline-Ethanol blends on GDI engine to reduce cost of vehicle ownership

2019-11-21
2019-28-2379
A major challenge for combustion development is to optimize the engine for improved fuel economy, reduce greenhouse gases. Stringent CAFÉ and emission norms require the customer to pay higher capital on vehicles. To offset the cost of ownership- cheaper and alternative energy sources are being explored. Ethanol blend with regular Gasoline and CNG are such alternative fuels. The study was carried on turbo-charged gasoline direct injection engine. The effect of ethanol on engine and vehicle performance is estimated and simulated numerically. The work is split into three stages: first the base 1D engine performance model was calibrated to match the experimental data. In parallel, vehicle level Simulink model was built and calibrated to match the NEDC cycle performance. Second, the thermal efficiency of the ethanol blend is calculated as a linear function of theoretical Otto cycle efficiency.
Technical Paper

Replacing twin electric fan radiator with Single fan radiator

2019-11-21
2019-28-2381
Downsizing is one of the crucial activities being performed by every automotive engineering organization. The main aim is to reduce – Weight, CO2 emissions and achieve cost benefit. All this is done without any compromise on performance requirement or rather with optimization of system performance. This paper evaluate one such optimization, where-in radiator assembly with two electric fan is targeted for downsizing for small commercial vehicle application. The present two fan radiator is redesigned with thinner core and use of single fan motor assembly. The performance of the heat exchanger is tested for similar conditions back to back on vehicle and optimized to get the balanced benefit in terms of weight, cooling performance and importantly cost. This all is done without any modification in vehicle interface components except electrical connector for fan. The side members and brackets design is also simplified to achieve maximum weight reduction.
Technical Paper

Experimental Investigation on Performance and Emission Characteristics of a Single Cylinder CRDI Engine Fueled with Diesel-Methanol Blend

2019-11-21
2019-28-2380
The diesel engine is widely used for its high thermal efficiency and better fuel conversion efficiency. However, increasing usage of petroleum fuel and environmental degradation motivates to use renewable biofuels as a replacement to conventional diesel. Biofuels produced from non-edible sources can be used as a partial substitute of diesel for the significant growth of fuel economy and reduction of environmental pollution. Methanol can be implemented as a blended fuel in the diesel without affecting engine design. In this study, the effect of diesel methanol blends and injection parameters such as fuel injection pressure (FIP)and start of injection (SOI) on a common rail direct injection (CRDI) diesel engine performance and emission were investigated. Four blends were prepared by mixing diesel with methanol (5%, 10%, 15% and 20% by mass) and adding a certain amount of oleic acid and iso-butanol to get a stable blend.
Technical Paper

Suspension hard points optimisation

2019-11-21
2019-28-2419
Objective This paper explores the usage of Altair simulation driven optimisation process, Front Suspension hard points of a sedan Car model are optimised for specific target toe curves using MotionView, MotionSolve and HyperStudy This process gives the optimal hard point values to match the target curves without much iterations. Methodology Parametric Multibody model of the front end of sedan is built in MotionView. To Carry out optimisation HyperStudy is used where few of the suspension hard points which affect the toe curves are chosen as design variable. For the chosen Design variables upper and lower bound limits are specified. Ride, Roll and lateral force tests are performed. Optimisation is performed using HyperStudy where it iterates the suspension hard points to match the target toe curves. Each iteration response can be visualized in HyperStudy and can be compared with the target toe curve.
Technical Paper

A Machine Learning based Multi-objective Multidisciplinary Design Optimization (MMDO) for Lightweighting the Automotive Structures

2019-11-21
2019-28-2424
The present work involves Machine Learning (ML) based Multi-objective Multidisciplinary Design Optimization (MMDO) for lightweighting the automotive structures. The challenge in deployment of MMDO algorithms in solving real-world automotive structural design problems is the enormous time involved in solving full vehicle finite element models that involve large number of design variables and multiple performance constraints pertaining to vehicle dynamics, durability, crash and NVH domains. With the availability of powerful workstations and using the advanced Computer Aided Engineering (CAE) tools, it has become possible to generate huge sets of simulation data pertaining to multiple domains.
Technical Paper

Engine Valve Train Dynamic Analysis using 1-D Simulation Approach

2019-11-21
2019-28-2422
In order to reduce engine development timing and cost, a numerical calculation used to evaluate valve train systems. This paper discusses the work done on kinematic and dynamic analysis of Valve Train (VT) system of a diesel engine by using 1-D Ricardo Valdyn software. The goal is to meet optimum intake, exhaust valve timing requirement, maximize valve open area and 20% overspeed requirement. Valve train model is prepared and inputs like mass and stiffness are estimated from actual weighing and finite element approach respectively. Simulation model is used for predicting valve bounce speed, valve displacement, cam-follower contact stress and strain in the rocker arm. Initially, Kinematic analysis is carried out to study the change in valve motion characteristics such as cam contour radius, tappet contact eccentricity etc. Further to this, dynamic analysis is carried out to assess forces and stresses on valve train components.
Technical Paper

Methodology for failure simulation Using 4 corner 6 DOF Road load simulator of Overhanging Components: An Experimental Approach

2019-11-21
2019-28-2404
Nowadays, Road Load Simulators are used by automobile companies to reproduce the accurate and multi axial stresses in test parts to simulate the real loading conditions. The road conditions are simulated in lab by measuring the customer usage data by sensors like Wheel Force transducers, accelerometers, displacement sensors and strain gauges on the vehicle body and suspension parts. The acquired data is simulated in lab condition by generating ‘drive file’ using the response of the above mentioned sensors. For generation of proper drive file, not only good FRF but ensuring stability of inverse FRF is also essential. Stability of the inverse FRF depends upon the simulation channels used. In this paper, an experimental approach was applied for focused failure simulation of engine mount, one of such low correlation zone, with known history of failure.
Technical Paper

Aerodynamic Analysis of a Passenger Car to Reduce Drag using Active Grill Shutter and Active Air Dam

2019-11-21
2019-28-2408
Active aerodynamics can be defined as the concept of reducing drag by making real-time changes to certain devices such that it modifies the airflow around a vehicle. Using such devices also have the added advantages of improving ergonomics and performance along with aesthetics. A significant reduction in fuel consumption can also be seen when using such devices. The objective of this work is to reduce drag acting on a passenger car using the concept of active aerodynamics with grill shutters and air dams. First, analysis has been carried out on a baseline passenger car and further simulated using active grill shutters and air dams for vehicle speed ranging from 60 kmph to 120 kmph, with each active device open from 0° to 90°. The optimized model is then validated for a scaled down prototype in a wind tunnel at 80kmph. Vehicle has been modelled using SolidWorks and the simulation has been carried out using ANSYS Fluent.
X