Refine Your Search




Search Results

Training / Education

ARP4754A and the Guidelines for Development of Civil Aircraft and Systems

ARP4754A substantially revises the industry guidance for the development of aircraft and aircraft systems while taking into account the overall aircraft operating environment and functions. This development process includes validation of requirements and verification of the design implementation for certification and product assurance. ARP4754A provides the practices for showing compliance with regulations and serves to assist companies in developing and meeting its own internal standards though application of the described guidelines.
Training / Education

Aircraft Cabin Safety and Interior Crashworthiness

The certification of transport category cabin interiors requires a thorough understanding of Part 25 Transport Category aircraft cabin interior safety and crashworthiness regulations and compliance requirements. Regardless of whether it is a simple modification, a specialized completion (VIP or VVIP) or airline passenger configuration, engineers, designers, and airworthiness personnel must understand and adhere to these requirements. This two day seminar will begin with a discussion of Commercial off the Shelf (COTS) test requirements.
Technical Paper

Fast accurate non-destructive measurement of absorber impedance and absorption

Cabin acoustic comfort is a major contributor to the potential sales success of new aircraft, cars, trucks, and trains. Recent design challenges have included the increased use of composites, and the switch to electrically powered vehicles, each of which change the interior noise spectral content and level. The role of acoustic absorption in cabins is key to the optimisation of cabin acoustic comfort for modern vehicles, with acoustic impedance data needed in order to assess and optimise the impact of each component of a given lay-up. Measurements of absorbing interior trim are traditionally performed using either sample holder tests in a static impedance tube (impedance and absorption), or through tests in reverberation rooms (absorption only). Both of these procedures present challenges. In-tube absorption and impedance measurements are destructive, requiring highly accurate sample cutting and sealing.
Technical Paper

An Optimization of Small Unmanned Aerial System (sUAS) Image Based Scanning Techniques for Mapping Accident Sites

Small unmanned aerial systems have gained prominence in their use as tools for mapping the 3-dimensional characteristics of accident sites. Typically, the process of mapping an accident site involves taking a series of overlapping, high resolution photographs of the site, and using photogrammetric software to create a point cloud or mesh of the site. This process, known as image-based scanning, is explored and analyzed in this paper. A mock accident site was created that included a stopped vehicle, a bicycle, and a ladder. These objects represent items commonly found at accident sites. The accident site was then documented with several different unmanned aerial vehicles at differing altitudes, with differing flight patterns, and with different flight control software. The photographs taken with the unmanned aerial vehicles were then processed with photogrammetry software using different methods to scale and align the point clouds.
Technical Paper

Helicopter Transmission and Drivelines - A Brief Overview of

Transmission and drivelines as they apply to helicopters are discussed including history, common configurations, and typical, industry design philosophies. A brief history of transmission use in helicopter applications is provided, including an emphasis on the flight critical nature of transmissions and drivelines in helicopter applications and how the helicopter transmission has evolved over their 100 years of service. Common helicopter drivelines are discussed for a variety of helicopter configurations (single main rotor, tandem rotor, and tilt rotor, among others), touching on typical shaft speed and horsepower ranges. Finally, typical helicopter transmission design practices are discussed for gear, bearing, and lubrication systems.
Technical Paper

Effects of Surface Preparation, Support Structures and Build Orientation on the Cyclic Stress-Strain Behavior of Inconel®718 Produced by SLM

The flexibility in design offered by advanced additive manufacturing technologies makes these processes more and more attractive for automotive and aircraft applications and, also, for the production of safety relevant metal components. The high strength, thermally resistant nickel-based alloy Inconel®718 is widely used by the aircraft industry and its low level of machinability makes it an optimal candidate for AM technologies. The challenge, together with improving the process, is now to build the path that will bring AM technologies from rapid prototyping to series production. Therefore, it is essential to investigate additively manufactured materials and the effect that subsequent processing, such as, for example surface preparation, has on their properties. Furthermore, while the static properties of additively manufactured Inconel®718 have already been investigated, this work aims to describe its cyclic stress-strain behavior, which can be used for fatigue assessment.