Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Applying DO-254 for Avionics Hardware Development and Certification

2024-11-20
This basic course introduces the intent of the DO-254 standard for commercial avionics hardware development. The content will cover many aspects of avionic hardware including, aircraft safety, systems, hardware planning, requirements, design, implementation, and testing. Participants will learn industry-best practices for real-world hardware development, common DO-254 mistakes and how to prevent them, and how to minimize risks and costs while maximizing hardware quality.
Training / Education

Applied Vehicle Dynamics

2024-09-23
Take notes! Take the wheel! There is no better place to gain an appreciation for vehicle dynamics than from the driver’s seat. Spend three, intense days with a world-renowned vehicle dynamics engineer and SAE Master Instructor, his team of experienced industry engineers, and the BMW-trained professional driving instructors. They will guide you as you work your way through 12 classroom modules learning how and why vehicles go, stop and turn. Each classroom module is immediately followed by an engaging driving exercise on BMW’s private test track.
Training / Education

ADAS Application Automatic Emergency Braking

2024-09-19
Active safety and (ADAS) are now being introduced to the marketplace as they serve as key enablers for anticipated autonomous driving systems. Automatic emergency braking (AEB) is one ADAS application which is either in the marketplace presently or under development as nearly all automakers have pledged to offer this technology by the year 2022. This one-day course is designed to provide an overview of the typical ADAS AEB system from multiple perspectives.
Training / Education

Injuries, Anatomy, Biomechanics & Federal Regulation

2024-09-09
Safety continues to be one of the most important factors in motor vehicle design, manufacturing, and marketing.  This course provides a comprehensive overview of these critical automotive safety considerations: injury and anatomy; human tolerance and biomechanics; occupant protection; testing; and federal legislation. The knowledge shared at this course enables participants to be more aware of safety considerations and to better understand and interact with safety experts. This course has been approved by the Accreditation Commission for Traffic Accident Reconstruction (ACTAR) for 18 Continuing Education Units (CEUs).
Training / Education

DO-326A and ED-202A An Introduction to the New and Mandatory Aviation Cyber-Security Essentials

2024-07-29
This course will introduce participants to industry best practices for real-world aviation cyber-security risk-assessment, development & assurance. Participants will learn the information necessary to help minimize DO-326/ED-202-set compliance risks and costs, while also optimizing cyber-security levels for the development, deployment and in-service phases Topics such as aircraft security aspects of safety, systems-approach to security, security planning, the airworthiness security process, and security effectiveness assurance will be covered.
Training / Education

AS13100 and RM13004 Design and Process Failure Mode and Effects Analysis and Control Plans

2024-07-03
This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. In the Aerospace Industry there is a focus on Defect Prevention to ensure that quality goals are met. Failure Mode and Effects Analysis (PFMEA) and Control Plan activities are recognized as being one of the most effective, on the journey to Zero Defects. This two-day course is designed to explain the core tools of Design Failure Mode and Effects Analysis (DFMEA), Process Flow Diagrams, Process Failure Mode and Effects Analysis (PFMEA) and Control Plans as described in AS13100 and RM13004.
Technical Paper

FMCW Lidar Simulation with Ray Tracing and Standardized Interfaces

2024-07-02
2024-01-2977
In pursuit of safety validation of automated driving functions, efforts are being made to accompany real world test drives by test drives in virtual environments. To be able to transfer highly automated driving functions into a simulation, models of the vehicle’s perception sensors such as lidar, radar and camera are required. In addition to the classic pulsed time-of-flight (ToF) lidars, the growing availability of commercial frequency modulated continuous wave (FMCW) lidars sparks interest in the field of environment perception. This is due to advanced capabilities such as directly measuring the target’s relative radial velocity based on the Doppler effect. In this work, an FMCW lidar sensor simulation model is introduced, which is divided into the components of signal propagation and signal processing. The signal propagation is modeled by a ray tracing approach simulating the interaction of light waves with the environment.
Technical Paper

Cyber Security Approval Criteria: Application of UN R155

2024-07-02
2024-01-2983
The UN R155 regulation is the first automotive cyber security regulation and has made security a mandatory approval criterion for new vehicle types. This establishes internationally harmonized security requirements for market approval. As a result, the application of the regulation presents manufacturers and suppliers with the challenge of demonstrating compliance. At process level the implementation of a Cyber Security Management System (CSMS) is required while at product level, the Threat Assessment and Risk Analysis (TARA) forms the basis to identify relevant threats and corresponding mitigation strategies. Overall, an issued type approval is internationally recognized by the member states of the UN 1958 Agreement. International recognition implies that uniform assessment criteria are applied to demonstrate compliance and to decide whether security efforts are sufficient.
Technical Paper

A Novel Approach for the Safety Validation of Emergency Intervention Functions using Extreme Value Estimation

2024-07-02
2024-01-2993
As part of the safety validation of advanced driver assistance systems (ADAS) and automated driving (AD) functions, it is necessary to demonstrate that the frequency at which the system exhibits hazardous behavior (HB) in the field is below an acceptable threshold. This is typically tested by observation of the system behavior in a field operational test (FOT). For situations in which the system under test (SUT) actively intervenes in the dynamic driving behavior of the vehicle, it is assessed whether the SUT exhibits HB. Since the accepted threshold values are generally small, the amount of data required for this strategy is usually very large. This publication proposes an approach to reduce the amount of data required for the evaluation of emergency intervention systems with a state machine based intervention logic by including the time periods between intervention events in the validation process.
Technical Paper

Software-supported Processes for Aerodynamic Homologation of Vehicles

2024-07-02
2024-01-3004
Homologation is an important process in vehicle development and aerodynamics a main data contributor. The process is heavily interconnected: Production planning defines the available assemblies. Construction defines their parts and features. Sales defines the assemblies offered in different markets, where Legislation defines the rules applicable to homologation. Control engineers define the behavior of active, aerodynamically relevant components. Wind tunnels are the main test tool for the homologation, accompanied by surface-area measurement systems. Mechanics support these test operations. The prototype management provides test vehicles, while parts come from various production and prototyping sources and are stored and commissioned by logistics. Several phases of this complex process share the same context: Production timelines for assemblies and parts for each chassis-engine package define which drag coefficients or drag coefficient contributions shall be determined.
Journal Article

Comparison of Adult Female and Male PMHS Pelvis and Lumbar Response to Underbody Blast

2024-06-28
2023-22-0003
The goal of this study was to gather and compare kinematic response and injury data on both female and male whole-body Post-mortem Human Surrogates (PMHS) responses to Underbody Blast (UBB) loading. Midsized males (50th percentile, MM) have historically been most used in biomechanical testing and were the focus of the Warrior Injury Assessment Manikin (WIAMan) program, thus this population subgroup was selected to be the baseline for female comparison. Both small female (5th percentile, SF) and large female (75th percentile, LF) PMHS were included in the test series to attempt to discern whether differences between male and female responses were predominantly driven by sex or size. Eleven tests, using 20 whole-body PMHS, were conducted by the research team. Preparation of the rig and execution of the tests took place at the Aberdeen Proving Grounds (APG) in Aberdeen, MD. Two PMHS were used in each test.
Journal Article

Investigation of THOR-AV 5F Biofidelity in Sled Test Conditions with a Semi-Rigid Seat

2024-06-28
2023-22-0004
THOR-AV 5F, a modified THOR-5F dummy, was designed to represent both upright and reclined occupants in vehicle crashworthiness studies. The dummy was evaluated in four test conditions: a) 25° seatback, 15 km/h, b) 25° seatback, 32 km/h, c) 45° seatback, 15 km/h, d) 45° seatback, 32 km/h. The dummy’s biomechanical responses were compared against those of postmortem human subjects (PMHS) tested in the same test conditions. The latest National Highway Traffic Safety Administration (NHTSA) BioRank method was used to provide a biofidelity ranking score (BRS) for each data channel in the tests to assess the dummy’s biofidelity objectively. The evaluation was categorized into two groups: restraint system and dummy. In the four test conditions, the restraint system showed good biofidelity with BRS scores of 1.49, 1.47, 1.15, and 1.79, respectively.
Journal Article

Frontal-Crash Occupant Protection in the Rear Seat: Submarining and Abdomen/Pelvis Response in Midsized Male Surrogates

2024-06-28
2023-22-0005
Frontal-crash sled tests were conducted to assess submarining protection and abdominal injury risk for midsized male occupants in the rear seat of modern vehicles. Twelve sled tests were conducted in four rear-seat vehicle-bucks with twelve post-mortem human surrogates (PMHS). Select kinematic responses and submarining incidence were compared to previously observed performance of the Hybrid III 50th-percentile male and THOR-50M ATDs (Anthropomorphic Test Devices) in matched sled tests conducted as part of a previous study. Abdominal pressure was measured in the PMHS near each ASIS (Anterior Superior Iliac Spine), in the inferior vena cava, and in the abdominal aorta. Damage to the abdomen, pelvis, and lumbar spine of the PMHS was also identified. In total, five PMHS underwent submarining. Four PMHS, none of which submarined, sustained pelvis fractures and represented the heaviest of the PMHS tested. Submarining of the PMHS occurred in two out of four vehicles.
Journal Article

Driving Behavior during Left-Turn Maneuvers at Intersections on Left-Hand Traffic Roads

2024-06-28
2023-22-0007
Understanding left-turn vehicle-pedestrian accident mechanisms is critical for developing accident-prevention systems. This study aims to clarify the features of driver behavior focusing on drivers’ gaze, vehicle speed, and time to collision (TTC) during left turns at intersections on left-hand traffic roads. Herein, experiments with a sedan and light-duty truck (< 7.5 tons GVW) are conducted under four conditions: no pedestrian dummy (No-P), near-side pedestrian dummy (Near-P), far-side pedestrian dummy (Far-P) and near-and-far side pedestrian dummies (NF-P). For NF-P, sedans have a significantly shorter gaze time for left-side mirrors compared with light-duty trucks. The light-duty truck’s average speed at the initial line to the intersection (L1) and pedestrian crossing line (L0) is significantly lower than the sedan’s under No-P, Near-P, and NF-P conditions, without any significant difference between any two conditions.
Journal Article

Evaluation of DAMAGE Algorithm in Frontal Crashes

2024-06-28
2023-22-0006
With the current trend of including the evaluation of the risk of brain injuries in vehicle crashes due to rotational kinematics of the head, two injury criteria have been introduced since 2013 – BrIC and DAMAGE. BrIC was developed by NHTSA in 2013 and was suggested for inclusion in the US NCAP for frontal and side crashes. DAMAGE has been developed by UVa under the sponsorship of JAMA and JARI and has been accepted tentatively by the EuroNCAP. Although BrIC in US crash testing is known and reported, DAMAGE in tests of the US fleet is relatively unknown. The current paper will report on DAMAGE in NCAP-like tests and potential future frontal crash tests involving substantial rotation about the three axes of occupant heads. Distribution of DAMAGE of three-point belted occupants without airbags will also be discussed. Prediction of brain injury risks from the tests have been compared to the risks in the real world.
X