Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Standard

On Board Oxygen Generating Systems (Molecular Sieve)

2015-12-04
CURRENT
AIR825/6A
The information provided in AIR825/6 applies to On Board Oxygen Generating Systems (OBOGS) - Molecular Sieve, that utilize the ability of molecular sieve materials by using Pressure Swing Adsorption Process (PSA) to separate and concentrate oxygen in the product gas from the surrounding air, respectively air provided by any compressor or by the aircraft engine (so called: Bleed Air), and to provide this oxygen enriched air or product gas as supplemental oxygen for breathing gas supply of crew and passengers onboard aircraft. The distribution system and the provided oxygen concentration have to fulfill the respective airworthiness regulations. Equipment using this technology is to provide supplemental oxygen for breathing gas supply of crew and passengers onboard aircraft, the suitable breathing gas oxygen partial pressure or oxygen concentration requirements are specified in AIR825/2 and the oxygen purity requirements in AS8010.
Standard

Chemical Oxygen Supplies

2014-10-30
CURRENT
AIR1133B
Solid chemical oxygen supplies of interest to aircraft operations are "chlorate candles" and potassium superoxide (KO2). Chlorate candles are used in passenger oxygen supply units and other emergency oxygen systems, such as submarines and escape devices. Potassium superoxide is not used in aircraft operations but is used in closed-cycle breathing apparatus. Characteristics and applications of both are discussed, with emphasis on chlorate candles.
Standard

Oxygen Systems for General Aviation

2014-07-11
CURRENT
AIR822C
This SAE Aerospace Information Report (AIR) provides a general overview of oxygen systems for general aviation use. Included are a brief review of the factors and effects of hypoxia, system descriptions, and mission explanations for system or component selection, and techniques for safe handling of oxygen distribution systems.
Standard

Oxygen Equipment for Aircraft

2012-12-03
CURRENT
AIR825D
This report provides information on the design and use of aircraft oxygen systems. It explains the physiological oxygen requirements of the human body in both a normal environment and in an hypoxic environment. It includes an overview of the continuous flow, demand and pressure demand, and liquid oxygen systems. A basic understanding of how each system operates is then specifically addressed in its own titled section. The charts, tables, and schematics provide a specific example of a theoretical oxygen system design and the calculations showing how that system would meet the regulations established by the FAR’s. A comprehensive overview of the theoretical oxygen requirements of the human body at altitude is also provided. A detailed list of specifications and standards applicable to aircraft oxygen systems is included.
Standard

Oxygen Systems for General Aviation

2006-06-05
HISTORICAL
AIR822B
This SAE Aerospace Information Report (AIR) provides a general overview of oxygen systems for general aviation use. Included are a brief review of the factors and effects of hypoxia, system descriptions, and mission explanations for system or component selection, and techniques for safe handling of oxygen distribution systems.
Standard

On Board Oxygen Generating Systems (Molecular Sieve)

2004-01-29
HISTORICAL
AIR825/6
The information provided in SAE AIR825/6 applies to On Board Oxygen Generating Systems (OBOGS) - Molecular Sieve, that utilize the ability of molecular sieve materials by using Pressure Swing Adsorption Process (PSA) to separate and concentrate oxygen in the product gas from the surrounding air, respectively air provided by any compressor or by the aircraft engine (so called: Bleed Air), and to provide this oxygen enriched air or product gas as supplemental oxygen for breathing gas supply of crew and passengers onboard aircraft. The distribution system and the provided oxygen concentration have to fulfill the respective FAA/JAA regulations. Equipment using this technology to provide supplemental oxygen for breathing gas supply of crew and passengers onboard aircraft, the suitable breathing gas oxygen partial pressure or oxygen concentration requirements are specified in AIR825/2 and the oxygen purity requirements in AS8010. NOTE: OBOGS has never been certified for commercial aircraft.
Standard

Liquid Oxygen Systems

2003-03-19
CURRENT
AIR825/5A
This Aerospace Information Report provides general information to aircraft designers and engineers, regarding LOX, its properties, its storage and its conversion to gas. Much useful information is included herein for aircraft designers regarding important design considerations for a safe and effective installation to an aircraft. The associated ground support equipment needed to support operations of LOX equipped aircraft is also discussed. It is important to realize that LOX equipped aircraft cannot be supported unless this support infrastructure is also available. A significant part of this document will address the specific advantages, disadvantages and precautions relating to LOX systems. These are important issues that must be considered in deciding which oxygen system to install to the aircraft. Also, many commercial and military aircraft use aeromedical LOX equipment that is mostly portable equipment.
Standard

Liquid Oxygen Systems

2002-04-01
HISTORICAL
AIR825/5
This Aerospace Information Report provides general information to aircraft designers and engineers, regarding LOX, its properties, its storage and its conversion to gas. Much useful information is included herein for aircraft designers regarding important design considerations for a safe and effective installation to an aircraft. The associated ground support equipment needed to support operations of LOX equipped aircraft is also discussed. It is important to realize that LOX equipped aircraft cannot be supported unless this support infrastructure is also available. A significant part of this document will address the specific advantages, disadvantages and precautions relating to LOX systems. These are important issues that must be considered in deciding which oxygen system to install to the aircraft. Also, many commercial and military aircraft use aeromedical LOX equipment that is mostly portable equipment.
Standard

Introduction to Oxygen Equipment for Aircraft

2001-12-14
CURRENT
AIR825/1
The purpose of this document is to give the reader an overview of the document package which makes up AIR825, Introduction to Oxygen Equipment for Aircraft, and a basic overview (see Section 4) of the operational concerns driven by human physiology during altitude exposure.
Standard

Oxygen Equipment for Aircraft

1999-05-01
HISTORICAL
AIR825C
This report provides information on the design and use of aircraft oxygen systems. It explains the physiological oxygen requirements of the human body in both a normal environment and in an hypoxic environment. It includes an overview of the continuous flow, demand and pressure demand, and liquid oxygen systems. A basic understanding of how each system operates is then specifically addressed in its own titled section. The charts, tables, and schematics provide a specific example of a theoretical oxygen system design and the calculations showing how that system would meet the regulations established by the FAR’s. A comprehensive overview of the theoretical oxygen requirements of the human body at altitude is also provided. A detailed list of specifications and standards applicable to aircraft oxygen systems is included.
Standard

Dynamic Testing Systems for Oxygen Breathing Equipment

1997-09-01
CURRENT
ARP1109B
This SAE Aerospace Recommended Practice (ARP) recommends performance requirements for test equipment used in dynamic testing of aviation oxygen breathing equipment. This document describes test equipment and methods used for testing continuous flow, demand and pressure demand regulators and their associated masks as well as filtered protective breathing devices; such articles of oxygen breathing or protective breathing equipment may be tested as individual components or as a complete system.
Standard

Oxygen Systems for General Aviation

1996-08-01
HISTORICAL
AIR822A
This SAE Aerospace Information Report (AIR) provides a general overview of oxygen systems for general aviation use. Included are a brief review of the factors and effects of hypoxia, system descriptions, and mission explanations for system or component selection, and techniques for safe handling of oxygen distribution systems.
Standard

Chemical Oxygen Supplies

1991-04-15
HISTORICAL
AIR1133A
Solid chemical oxygen supplies of interest to aircraft operations are "chlorate candles" and potassium superoxide (KO2). Chlorate candles are used in passenger oxygen supply units and other emergency oxygen systems, such as submarines and escape devices. Potassium superoxide is not used in aircraft operations but is used in closed-cycle breathing apparatus. Characteristics and applications of both are discussed, with emphasis on chlorate candles.
Standard

DYNAMIC TESTING SYSTEMS FOR OXYGEN BREATHING EQUIPMENT

1987-04-01
HISTORICAL
ARP1109A
This ARP describes test equipment and methods used for testing continuous flow, demand and pressure demand regulators and their associated masks as well as filtered protective breathing devices; such articles of oxygen breathing or protective breathing equipment may be tested as individual components or as a complete system.
Standard

CONTINUOUS FLOW GENERAL AVIATION OXYGEN MASKS

1971-09-01
HISTORICAL
AS1224
This standard defines the minimum requirement for the design, construction and performance of continuous flow oxygen masks for crew and passengers of general aviation civil aircraft.
X