Refine Your Search




Search Results

Training / Education

Advanced Diesel Particulate Filtration Systems

As diesel emissions regulations have become more and more stringent, diesel particulate filters (DPF) have become possibly the most important and complex diesel aftertreatment device. This seminar covers many DPF-related topics using fundamentals from various branches of applied sciences such as porous media, filtration and materials sciences and will provide the student with both a theoretical as well as an applications-oriented approach to enhance the design and reliability of aftertreatment platforms.
Training / Education

Automotive Lighting Testing and Requirements

It has not been commonly known that automotive exterior lights are safety devices and must comply with governmental regulations. Since the 1930s, the SAE Lighting Standards Committee has been actively working with the automotive industry OEMs, lamp makers, tier-two suppliers, and human factor experts to develop automotive lighting standards. These standards have been widely used or referenced by the U.S. federal or state governments in establishing and enforcing the lighting regulations.
Training / Education

Fundamental Concepts of Turbocharging Modern Engines Current Practices and Trends

Turbocharging is rapidly becoming an integral part of many internal combustion engine systems. While it has long been a key to diesel engine performance, it is increasingly seen as an enabler in meeting many of the efficiency and performance requirements of modern automotive gasoline engines. This web seminar will discuss the basic concepts of turbocharging and air flow management of four-stroke engines. The course will explore the fundamentals of turbocharging, system design features, performance measures, and matching and selection criteria.
Training / Education

Automotive Lighting Design and Technology

Since the invention of the automobile, lighting has been an important subsystem on all ground vehicles. Automotive lighting is vital to passenger safety, comfort and vehicle styling. The technology used in automotive lighting has rapidly expanded to make the lighting more value added, safer and pleasing to customers. This seminar provides broad information about automotive lighting systems with emphasis on lighting functions, effectiveness, and technologies. The intent is to assist attendees to gain sufficient knowledge about automotive lighting and its importance in overall vehicle design and development.
Training / Education

Emissions-Related OBD Systems A Design Overview

On-board diagnostics, required by governmental regulations, provide a means for reducing harmful pollutants into the environment. Since being mandated in 1996, the regulations have continued to evolve and require engineers to design systems that meet strict guidelines. This one day seminar is designed to provide an overview of the fundamental design objectives and the features needed to achieve those objectives for generic on-board diagnostics. The basic structure of an on-board diagnostic will be described along with the system definitions needed for successful implementation.
Training / Education

Introduction to Airframe Engineering Design for Manufacturing, Assembly and Automation

Why is a design for manufacturing, assembly and automation so important?  This introductory course on airframe engineering will cover the importance of design for manufacturing, assembly and automation in aerospace.  It will review what the key drivers are for a “good” design and some of the key points for manufacturing and assembly of aircraft components.    It will look at how an engineer can combine traditional technologies with new, cutting-edge technologies, to determine the best scenario for success.  
Research Report

Unsettled Topics Concerning Automated Driving Systems and the Transportation Ecosystem

Over the last 100 years, the automobile has become integrated in a fundamental way into the broader economy. A broad and deep ecosystem has emerged, and critical components of this ecosystem include insurance, after-market services, automobile retail sales, automobile lending, energy suppliers (e.g., gas stations), medical services, advertising, lawyers, banking, public planners, and law enforcement. These components – which together represent almost $2 trillion of the United State economy – are in equilibrium based on the current capabilities of automotive technology. However, the advent of autonomous vehicles (AVs) and technologies like electrification have the potential to significantly disrupt the automotive ecosystem. The critical cog governing the rate and pace of this shift is the management of the test and verification of AVs.
Technical Paper

Optimization of vehicle side panel to improve crashworthiness.

The front of a car, though susceptible to the biggest impacts in terms of magnitude, has space and additional reinforcement to incorporate various safety measures. The rear has considerable amount of space to contain a proper crash box. The side of the car, though, doesn’t have this flexibility in design, the main limiting parameter being space. Any intrusion into the passenger cabin can result in serious injury or even death. The objective of this work is to improve the crashworthiness of a vehicle’s side so as to reduce intrusion into the passenger cabin. The work is focused on optimizing the door and B pillar. The optimized side panel is compared with the baseline model as per standard. ANSYS solver is used for the simulation. The optimized design applied to the door and B pillar will significantly improve crashworthiness of the vehicle side panel as a whole.
Technical Paper

Passenger "Sleeper Bus" Structure, an Optimization Study using Finite Element Analysis

Sleeper buses are increasingly used as connectivity between cities and remote areas with sleeping comfort for passengers. During the normal operation, the bus body is subjected to several loads, external loads from the road (i.e. crossing over a speed bump, breaking & cornering). Moreover, there is a substantial possibility that these loads may lead to a structural failure. Hence, it is necessary to determine stresses occurred in the bus body to ensure its integrity under these driving scenarios. During the accident, rollover/front/rear/side impact, energy absorbing capacity of bus body structure is crucial for safety of passengers. The objective of this study is to reduce weight of bus structure while maintaining cost & safety as constraint. 3D Model prepared in NX and finite element model created in hypermesh ,LS-dyna/optistruct used as solver and post processing done in hyperview. In this study, fully loaded bus with passengers as well as maximum language mass, considered.
Technical Paper

Miniaturized and sleek protective device

A miniaturized and sleek protective device M. Priyanka, Mahindra&Mahindra, India D. Boobala Krishnan*, Mahindra&Mahindra, India T.Vijayan, Mahindra& Mahindra, India Keywords-Fuse, Lightweight. Research and/or Engineering Questions/Objective: Now-a-days there is lot of advancement coming in automobiles. Earlier the electronics were used in engine and engine compartment areas. Now all hydraulics and transmission have been operated by electronics. The role of electronics like sensors, actuators increasing day by day for lifting and moving operations. With increase in electronics circuit, there is complex in wiring harness and packaging space for fuse box is premium Limitations: Limitations of placing other devices. Occupy more space and weight in the vehicle. Packing constraint due to vibration and thermal management issues. Methodology: Two different fuse of same rating can be given in one fuse and we can reduce the wire size.
Technical Paper

Powertrain topologies for 2 wheelers : From ICE to Electrification

As Battery cost is expected to see a Downward trend, Electrification of Powertrain in general is expected to pick up and 2wheeler Market is foreseen to be the Flag bearer in this race towards Electrification. In this paper, we would like to emphasize on the Journey of 2wheelers from Conventional Internal combustion Engine to Electrified Powertrains which we foresee in the future. Methodology: EV - Analysis of OEM strategies and upcoming trends in connectivity and electrification. Estimation of current market size of 2Wheeler and segmentation based on different personas. Building survey data based personas around ownership patterns for electric 2Wheelers. Mapping consumer decision process for electric 2Wheelers. Analyse the decision influencers and role of influencers in decision making process. Hybrid - Analysis of different hybrid topologies. Feasibility study via simulation and focus group assessments to evaluate the design. PoC will also be tried to validate the concept.
Technical Paper

PMSM motor drive for Electric Vehicle applications

To control air pollution in urban areas and to reduce carbon print in the cities, nowadays EV’s are preferred over IC engine vehicles. Earlier Electric vehicles used DC motor and Induction motors. But Brushless Permanent Magnet motors are preferred over Induction motor for EV’s due to their High Torque density, high-power density and highly efficiency. Prevalent Electric vehicles today have Brushless DC motors. Compared to BLDC, PMSM motor have smoother control and negligible torque ripplesThus, PMSM motor is preferred over BLDC for Electric Vehicle, because of its sinusoidal back emf which results in smoother control, and results into smoother and more comfortable driving experience to users. Methodology Sensor based field-oriented control (FOC) is implemented in 48 V 5kW Interior PMSM motor. . To start the Synchronous motor initial position of the rotor magnetic field should be known.
Technical Paper

Noise and vibration simulations method for electric hybrid tractor powertrain.

Internal combustion (IC) engines have been serving as prime source of power in tractors, since late 19th Century. Over this period, there have been significant improvements in IC engine technology leading to increased power density, reduction in tailpipe emissions and refinement in powertrain noise of tractors. As the regulations governing tailpipe emissions continue to be more stringent, original equipment manufacturers also have initiated work on innovative approaches such as diesel-electric hybrid powertrains to ensure compliance with new norms. However, introduction of such technologies may impact customer’s auditory, vibratory and drivability perceptions. Absence of conventional IC engine noise, association of electric whistle and whine, torque changes with activation/de-activation of motors and transmission behavior under transient conditions may result in new NVH issues in hybrid electric vehicles.