Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Fuel Cells for Transportation

2024-07-16
This is a three-day course which provides a comprehensive and up to date introduction to fuel cells for use in automotive engineering applications. It is intended for engineers and particularly engineering managers who want to jump‐start their understanding of this emerging technology and to enable them to engage in its development. Following a brief description of fuel cells and how they work, how they integrate and add value, and how hydrogen is produced, stored and distributed, the course will provide the status of the technology from fundamentals through to practical implementation.
Technical Paper

Graph based cooperation strategies for automated vehicles in mixed traffic

2024-07-02
2024-01-2982
In the context of urban smart mobility, vehicles have to communicate with each other, surrounding infrastructure, and other traffic participants. By using Vehicle2X communication, it is possible to exchange the vehicles’ position, driving dynamics data, or driving intention. This concept yields the use for cooperative driving in urban environments. Based on current V2X-communication standards, a methodology for cooperative driving of automated vehicles in mixed traffic scenarios is presented. Initially, all communication participants communicate their dynamic data and planned trajectory, based on which a prioritization is calculated. Therefore, a decentralized cooperation algorithm is introduced. The approach is that every traffic scenario is translatable to a directed graph, based in which a solution for the cooperation problem is computed via an optimization algorithm.
Technical Paper

Enhancing BEV Energy Management: Neural Network-Based System Identification for Thermal Control Strategies

2024-07-02
2024-01-3005
Modeling thermal systems in Battery Electric Vehicles (BEVs) is crucial for enhancing energy efficiency through predictive control strategies, thereby extending vehicle range. A major obstacle in this modeling is the often limited availability of detailed system information. This research introduces a methodology using neural networks for system identification, a powerful technique capable of approximating the physical behavior of thermal systems with minimal data requirements. By employing black-box models, this approach supports the creation of optimization-based operational strategies, such as Model Predictive Control (MPC) and Reinforcement Learning-based Control (RL). The system identification process is executed using MATLAB Simulink, with virtual training data produced by validated Simulink models to establish the method's feasibility. The neural networks utilized for system identification are implemented in MATLAB code.
X