Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A novel approach on range prediction of a hydrogen fuel cell electric truck

2019-11-21
2019-28-2514
A novel approach on range prediction of a hydrogen fuel cell electric truck C.Venkatesh - Manager - Product Development, Sustainable Mobility & Advanced Technologies Abstract: A novel approach on range prediction of a hydrogen fuel cell electric vehicle Abstract: Today's growing commercial vehicle population creates a demand for fossil fuel surplus requirement and develops highly polluted urban cities in the world. Hence addressing both factors are very much essential. Battery electric vehicles are with limited vehicle range and higher charging time. So it is not suitable for the long-haul application. Hence the hydrogen fuel cell based electric vehicles are the future of the commercial electric vehicle to achieve long range, zero emission and alternate for reducing fossil fuels requirement. The hydrogen fuel-cell electric vehicle range, it means the total distance covered by the vehicle in a single filling of hydrogen into the onboard cylinders.
Technical Paper

A review on influence of different flushing methods on Material Removal Rate using EDM.

2019-11-21
2019-28-2543
Electrical release machining (EDM), is a material removal procedure whereby a coveted shape is acquired by utilizing electrical releases (sparks). Material is expelled from the work piece by a progression of quickly repeating current releases between cathode and anode, isolated by a dielectric fluid and subject to an electric voltage. At the point when the voltage between the two terminals is expanded, the power of the electric field in the volume between the anodes winds up more prominent than the quality of the dielectric (in any event in a few spots), which separates, enabling current to stream between the two cathodes. This wonder is the equivalent as the breakdown of a capacitor (condenser). Accordingly, material is expelled from the cathodes.
Technical Paper

NEXT GENERATION POWER DISTRIBUTION UNIT IN WIRING HARNESS

2019-11-21
2019-28-2571
Keywords – Miniaturization, Low Profile (LP) Relays, Low Profile (LP) Fuses, Fuse box, Wiring Harness Research and/or Engineering Questions/Objective With the exponential advancement in technological features of automobile’s EE architecture, designing of power distribution unit becomes complex and challenging. Due to the increase in the number of features, the overall weight of power distribution unit increases and thereby affecting the overall system cost and fuel economy. The scope of this document is to scale down the weight and space of the power distribution unit without compromising with the current performance. Methodology Miniaturization involves replacing the mini fuses and J-case fuses with LP mini and LP J-case fuses respectively. The transition doesn’t involve any tooling modification and hence saves the tooling cost.
Technical Paper

Steering and Handling Performance Optimization Through Correlation of Objective - Subjective Parameters and Multi-body Dynamics Simulation

2019-11-21
2019-28-2412
RESEARCH OBJECTIVE: Automobile Industry has driven through the ages with continuous development with innovative technologies and frugal engineering. Expectation of customer is also increasing through the generations. To meet the customer demand for performance and be best in market, OEM needs to deliver best performance of vehicle with cost effective and short development process. Steering and Handling of vehicle is one of major customer touchpoints and needs to be tuned to achieve various conflicting requirements. The objective of this research is to optimize the steering and handling using correlation between three major methods of evaluation. METHODOLOGY: Methodology for optimization of steering and handling performance using correlation between subjective evaluation, objective measurement and multi-body-dynamic simulation is presented.
Technical Paper

Paper Title : Connectivity in 2wheeler: Opportunities & Challenges

2019-11-21
2019-28-2437
Abstract: Future of Mobility is mainly driven by 3 main pillar viz Connected , Electrified and Automated Driving. With advancement in Communication Technology supplemented by huge customer Base , Connectivity has proven to deliver better Services to the End-user. The next step in this journey would be to connect the so called “Things” and the Things that we want to connect is the 2 wheeler in the Mobility domain This paradigm shift in the Mobility Landscape is expected to bring plethora of opportunities on one side as well as new challenges that were never witnessed in the realm of Mobility in the Past. This paper focuses on Opportunities in terms of Location Based services, Vehicle Management, Data Analytics, Infotainment , and possible Business scenarios and Models as well as challenges in Terms of Security and Data Ownership Methodology: Analysis of OEM and Supplier strategies/approaches and upcoming trends in connectivity and electrification.
Technical Paper

Electric Commercial Vehicles And Charging Solutions

2019-11-21
2019-28-2476
Objective : Objective of the paper is to acquaint the audience with the concept of electric vehicles, Powertrain components used in an electric bus, Siemens contribution to the field of Electromobility, Typical configurations used in an electric bus, challenges and current limitations, emerging Technologies, future, how to address the future charging infra requirement. Methodology : The subject shall be discussed with the audience through a presentation coupled with Explanation by the presenter. The topic shall be opened with the concept of electromobility followed By history of electromobility at Siemens, contribution to the field of electro mobility, typical configurations of electric vehicles, Advantages of electric vehicles vis a vis conventional diesel buses, typical configurations of an electric bus, feasibility of electric buses for various transport services. Comparison of induction motor Vs.
Technical Paper

Performance & efficiency Improvement of Electric Vehicle Power train

2019-11-21
2019-28-2483
Introduction: The advent of electric mobility is changing the conventional mobility techniques and their application in automobiles across all segments. This development comes with challenges ranging across varied sub -systems in a vehicle including Power Train, HVAC, Accessories, etc. Objective: This paper would concentrate on the Power train related sub systems & improvement of the same both in terms of Efficiency & Performance. Methodology: The electric power train consists of three major sub parts: 1. Motor Unit 2. Controller with Power electronics 3. Battery Pack with BMS We would concentrate on improving the overall efficiency and performance of all these subsystems while they perform in vehicle environment and work in tandem by deploying following techniques: a. Improved Regenerative Braking for converting vehicles Kinetic energy into electrical energy using specific algorithms and control techniques b.
Technical Paper

Design analysis of a retrofit system for an electric two wheeler

2019-11-21
2019-28-2482
Two wheelers are the major mode of single transport in the metros of India. They contribute about 70 % of the auto market unit wise. Also it is proved from the research that for per unit energy consumption they contribute more to the environment emission. Conventional IC engine based energy supply unit can be replaced with an electric DC motor with chargeable battery as the energy source for the two wheelers present in the market. In the current research, engine is replaced with the motor, batteries and controller. The above system is placed on the space emptied by the conventional engine, The design developed is tested on different gradients for identifying the motor torque for minimum and maximum resistances available on the road. The paper provides an insight on the of the torque requirements based on variable resistances required for two wheelers. Also the system will be used as a retrofit for the existing IC engine bikes to be converted in electric bikes.
Technical Paper

Changes in user experiences of electric vehicles

2019-11-21
2019-28-2489
Research Objective The objective of the paper is to research what are the changes in experiences being brought about due to the advent of Electric Vehicles (EVs). EVs are silent, have less complex propulsion system, and have free space under the hood, amongst other things. Each change brings about both good and bad experiences across the spectrum of users. Some of the bad experiences can be safety incidents leading to death as well. Researching the areas that are harmful to end users, including pedestrians, will be our focus area. Methodology Our methodology will look at the changes at the vehicle architecture level which are inherent to the EV design. Research how are the experiences so far due to these changes. Are these just inconveniences or safety hazards? EVs have excellent NVH characteristics. A farmer may love a silent tractor, but a racing enthusiast may not like a relatively silent sports car.
Technical Paper

Importance & contribution of Alternate fuels in India's Green mobility story.

2019-11-21
2019-28-2376
Indian automotive industry has witnessed never-seen-before push towards Green mobility from the Government of India (GOI). GOI has maintained a firm stature while leap-frogging from BS-IV to BS-VI and has backed up its intent with equally firm actions of providing the facilities, infrastructure and necessary support to industry. After a lot of initial resistance, the Auto manufacturers have taken up the challenge and are well paced towards meeting the target of 1st April, 2020. Due to many aspects such as commercial viability, wide range of expectation from different type of customer segments e.g. 2-wheeler, 3-wheelers, SCV, Light & MHCV and passenger car segments etc. the overall landscape of market in terms of product segmentation, Diesel-Petrol share pattern is poised to change. Parallel to this development, a wave of electric vehicle enthusiasts has hit the world which boasts of being the ultimate solution towards Green mobility.
Technical Paper

Experimental investigation on performance and emission characteristics of a single cylinder CRDI engine fuelled with a diesel-methanol blend.

2019-11-21
2019-28-2380
The diesel engine is widely used for its high thermal efficiency and better fuel conversion efficiency. However, increasing usage of petroleum fuel and environmental degradation motivates to use renewable biofuels as a replacement to conventional diesel. Biofuels produced from non-edible sources can be used as a partial substitute of diesel for the significant growth of fuel economy and reduction of environmental pollution. Methanol can be implemented as a blended fuel in the diesel without affecting engine design. In this study, the effect of diesel methanol blends and injection parameters such as fuel injection pressure (FIP)and start of injection (SOI) on a common rail direct injection (CRDI) diesel engine performance and emission were investigated. Four blends were prepared by mixing diesel with methanol (5%, 10%, 15% and 20% by mass) and adding a certain amount of oleic acid and iso-butanol to get a stable blend.
Technical Paper

EXPERIMENTAL INVESTIGATION ON THE PERFORMANCE AND EMISSION CHARACTERISTICS OF A DIRECT INJECTION DIESEL ENGINE USING BLENDS OF ETHYL ESTER OF JATROPHA OIL AND ETHANOL

2019-11-21
2019-28-2378
The need of Diesel as fuel has greatly pressurized the now scarcely available natural resources and is likely to become a luxury for the future generations. This paper aims at finding an alternate for diesel that can hopefully reduce the pressure on its existing demand. This paper presents a comparative study on use of different blends of Jatropha Oil (J) and Ethanol (E) as fuel in a diesel engine to observe its performance and emission characteristics. The findings are later compared with corresponding values of neat Diesel as fuel. Since Jatropha oil is more viscous and has polyunsaturated characteristics in its natural form, its ethyl ester was produced by transesterification process and later blended with Ethanol in different proportions like 90% J 10%E, 80J-20E, 70J-30E and 60J-40E.
Technical Paper

Effect of Gasoline-Ethanol blends and CNG on GDI engine to reduce cost of vehicle ownership

2019-11-21
2019-28-2379
A major challenge for combustion development is to optimize the engine for improved fuel economy, reduce greenhouse gases. Stringent CAFÉ and emission norms require the customer to pay higher capital on vehicles. To offset the cost of ownership- cheaper and alternative energy sources are being explored. Ethanol blend with regular Gasoline and CNG are such alternative fuels. The study was carried on turbo-charged gasoline direct injection engine. The effect of ethanol on engine and vehicle performance is estimated and simulated numerically. The work is split into three stages: first the base 1D engine performance model was calibrated to match the experimental data. In parallel, vehicle level Simulink model was built and calibrated to match the NEDC cycle performance. Second, the thermal efficiency of the ethanol blend is calculated as a linear function of theoretical Otto cycle efficiency.
Technical Paper

Bio diesel-an alternative fuel similar to conventional or ‘fossil’ diesel.

2019-11-21
2019-28-2385
Currently Automotive industry is looking for sustainable alternate of Conventional fuels. Bio diesel is an alternative fuel similar to conventional or ‘fossil’ diesel. It is produced from vegetable oil, animal fats, tallow and waste cooking oil. Bio diesel is one of the most promising fuel which can not only replace the conventional fuels but also environment friendly in terms of Greenhouse gases emission. Bio diesel can be produced from various sources and can be sustainable fuel for automotive vehicles. In this paper, efforts have been taken to convert existing Diesel engine into Bio diesel compliant engine. For making suitable for Biodiesel operation, modification in Engine Fuel system, filter and Sealing were carried out. Further Engine performance and emission testing were done and results were compared with performance and emission of same configuration Diesel engine.
Technical Paper

Utilization of treated waste engine oil -butanol blends as fuel for CI engine operated under an optimal engine parameters

2019-11-21
2019-28-2383
Butanol is an attractive alternative fuel to fuel diesel engine. Waste engine oil is causing land pollution and contamination to groundwater a lot. This experimental study is to investigate the performance of treated waste engine oil and butanol as fuel to diesel engine operated under optimal engine operating parameters. This study was conducted in four stages: Treating the waste engine oil; Preparation of blends and testing the properties; Arriving at an optimal injection timing, nozzle opening pressure, compression ratio, and intake air temperature to suit the possible blend of treated waste engine oil and butanol; Testing the possible blend under optimal operating parameters under various load conditions. The properties test indicated that 35% of butanol can be blended with treated engine oil with respect to the essential properties for fueling diesel engine. To optimize the parameters L16 orthogonal array with the Taguchi method was used.
Technical Paper

Utilisation Treated Waste Engine oil and Diesohol blends as fuel for Compression Ignition Engine – An Experimental Study

2019-11-21
2019-28-2384
Diesel Ethanol (Diesohol) blends are one of the suitable alternative fuel to replace diesel for fueling the compression ignition engines. This experimental study is to utilize optimal fuel blend that contains a higher volume of ethanol in diesel with treated waste engine oil as co-solvent for preventing the phase separation. This study includes three stages: Treating the waste engine oil, preparation of diesel ethanol blends with treated waste engine oil as co-solvent, testing the blends for solubility, properties and performance in a compression ignition engines. Treatment of waste engine oil was conducted in five steps including the acid-clay treatment, in which acetic acid and fuller earth were used as treating materials. Solubility test was conducted for various proportions of diesel-ethanol blends (from 0% to 50% of ethanol by volume) and treated waste engine oil (from 5% to 25%). The stable blends were tested for essential properties as per the ASTM standards.
Technical Paper

EMISSION REDUCTION OF A DIESEL ENGINE FUELED WITH BLENDS OF BIOFUEL UNDER THE INFLUENCE OF 1,4-DIOXANE AND RICE HUSK NANO PARTICLE.

2019-11-21
2019-28-2387
Research Objectives. In this modern era increase in Pollution became a huge impact in the lives of all living creatures, in this automobile tends to be one of the major contributors in terms of air pollution thanks to their exhaust emissions. The objective of the present study is to reduce the amount of harmful pollutants emitted from the automobiles by the utilization of a biofuel further influenced by two additives (liquid and a Nano additive). Methodology In this study, first the bio oil is extracted, Then the biofuel is mixed with diesel fuel at different proportions of 20%, 40% by volume. Experiments are carried out in a direct injection compression ignition engine, which is a stationary test engine manufactured by Kirloskar, connected to a computer setup. The emission values in the exhaust gases are obtained using AVL exhaust gas analyzer.
Technical Paper

A mathematical expression to predict the influence of ethanol concentration on distillation behavior of gasoline-ethanol fuel blend and impact of non -ionic surfactant on E20 fuel

2019-11-21
2019-28-2386
Blending of primary alcohol in gasoline surges the vapour pressure significantly and exhibits azeotrope behaviour that effect severely on the atmospheric distillation yields. In this experiment, primary alcohol (Ethanol) were blended in varied volumetric proportion (5%, 10%, 15%, 20%, 25%) with hydrocracked gasoline, influence on volatility behaviour and distillation properties were investigated. Physical properties of this blends were investigated for vapour pressure (VP), VLI, DI and distillation which were selected to evaluate the influence of alcohol in azeotrope behaviour of the fuel mix reflected through pattern of distillation curve (temperature vs % recovery range). This fuel mix exhibited rise in recovery at 700C (E70), VP, VLI and area of azeotrope with increase in % of alcohol volume in gasoline blend.
Technical Paper

CNG injector performance analysis against variation of physical and electrical parameters: An alternate fuel approach

2019-11-21
2019-28-2389
Authors: Udit Kaul, Mahendarpal and Madhusudan Joshi Organization: International Centre for Automotive Technology, Manesar Introduction: In this paper, a study concerning multi-point CNG injectors (MPCI) or commonly known as injector rail would be presented. Here we would make a detailed analysis regarding the performance of MPCIs due to variation in physical and electrical parameters. In this case multiple MPCIs would be considered and there electrical and dimension parameters would be compared with respect to their performance. The performance comparison would be done based on the common compliance standard under standard laboratory conditions. We would also like to propose the optimal combination of electrical and dimension parameters for better performance. The variables to be considered for the proposed study are: injector valve open/shut timing, injector dimension, voltage levels, solenoid types etc. Key words : multi-point CNG injectors, injector valve, solenoid
Technical Paper

Approach for CO2 Reduction in India’s Automotive Sector

2019-11-21
2019-28-2388
India has gone through a lot of transformation over the last decade. Today it is the 6th largest and one of the fastest growing economies in the world. Rising income level, increased consumerism, rapid growth in urbanization and digitization have attributed to this change. Government focus on “Make in India” for promoting trade and investment in India have ensured that India emerge as one of the largest growing economies in the world. The automotive industry played a pivotal role in the manufacturing sector to boost economic activities in India. The passenger car market has increased 3 times over the last decade and it has led to increased mobility options for many people across India. However, this has put concerns on the country’s energy security and emission levels. According to IEA’s recent report on global CO2 emission, 32.31 Gt of CO2 emissions were from fuel combustion in 2016, out of which transport sector contributed ~25%.
X