Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

FEA Beyond Basics Nonlinear Analysis

2020-06-10
Finite Element Analysis (FEA) has been an indispensable tool for design simulation for several decades but this wide spread use has been limited to simple types of analyses. Relatively recently, more advanced analyses have given easy to use interfaces enabling design engineers to simulate problems formerly reserved for analysts. This three-session web seminar targets the FEA users who wish to explore those advanced analysis capabilities.
Training / Education

Vehicle Crash Reconstruction Principles and Technology

2020-02-17
Crash reconstruction is a scientific process that utilizes principles of physics and empirical data to analyze the physical, electronic, video, audio, and testimonial evidence from a crash to determine how and why the crash occurred. This course will introduce this reconstruction process as it gets applied to various crash types - in-line and intersection collisions, pedestrian collisions, motorcycle crashes, rollover crashes, and heavy truck crashes. Methods of evidence documentation will be covered. Analysis methods will also be presented for electronic data from event data recorders and for video.
Training / Education

Fundamentals of Threaded Fasteners

2019-12-18
Fastener experts believe that upwards of 95% of all fastener failures are the result of either the wrong fastener for the job or improper installation. Whether this shocking figure is accurate or not, it is irrefutable that threaded fasteners are poorly misunderstood by many in both the fastener and user communities. In October 1990 the USS Iwo Jima suffered a catastrophic steam valve accident minutes after leaving port following repairs to its steam plant. In one of the single most deadly events of Operation Desert Storm, ten of the eleven crewmen present in the engine compartment would lose their lives.
Training / Education

Introduction to Airframe Engineering Design for Manufacturing, Assembly and Automation

2019-12-16
Why is a design for manufacturing, assembly and automation so important?  This introductory course on airframe engineering will cover the importance of design for manufacturing, assembly and automation in aerospace.  It will review what the key drivers are for a “good” design and some of the key points for manufacturing and assembly of aircraft components.    It will look at how an engineer can combine traditional technologies with new, cutting-edge technologies, to determine the best scenario for success.  
Training / Education

FEA Beyond Basics Thermal Analysis

2019-12-16
Finite Element Analysis (FEA) is a powerful and well recognized tool used in the analysis of heat transfer problems. However, FEA can only analyze solid bodies and, by necessity thermal analysis with FEA is limited to conductive heat transfer. The other two types of heat transfer: convection and radiation must by approximated by boundary conditions. Modeling all three mechanisms of heat transfer without arbitrary assumption requires a combined use of FEA and Computational Fluid Dynamics (CFD).
Training / Education

Weibull-Log Normal Analysis Workshop

2019-12-09
RMS (Reliability-Maintainability-Safety-Supportability) engineering is emerging as the newest discipline in product development due to new credible, accurate, quantitative methods. Weibull Analysis is foremost among these new tools. New and advanced Weibull techniques are a significant improvement over the original Weibull approach. This workshop, originally developed by Dr. Bob Abernethy, presents special methods developed for these data problems, such as Weibayes, with actual case studies in addition to the latest techniques in SuperSMITH® Weibull for risk forecasts with renewal and optimal component replacement.
Training / Education

Vibration Analysis Using Finite Element Analysis (FEA)

2019-12-02
Finite Element Analysis (FEA) has been used by engineers as a design tool in new product development since the early 1990's. Until recently, most FEA applications have been limited to static analysis due to the cost and complexity of advanced types of analyses. Progress in the commercial FEA software and in computing hardware has now made it practical to use advanced types as an everyday design tool of design engineers. In addition, competitive pressures and quality requirements demand a more in-depth understanding of product behavior under real life loading conditions.
Training / Education

Effective Writing for Engineering and Technical Professionals

2019-11-25
The ability to write concise and unambiguous reports, proposals, manuals, or other technical documents is a key skill for any high-functioning engineer or technical staff person in the mobility industries. Through a combination of class discussions, interactive workshop activities, assignments, checker teams (review teams) and job aids, this course delivers real-life technical writing techniques and tools that can be immediately applied. Attendees discover the importance of knowing their audiences and how to communicate technical information in a "user-friendly" style.
Technical Paper

A Mathematical Approach to Determine Die Wear during Forging Process and Validation by Experimental Technique

2019-11-21
2019-28-2563
The automotive industry is constantly trying to develop cost effective, high strength and lightweight components to meet the emission and safety norms while remaining competitive in the market. Forging process plays an important role to produce most of the structural components in a vehicle. Precision forging technology is used to produce components with little or no flash leading to elimination of machining process after forging. The load acting on the dies during net or near net forging is very high and leads to wear in the die. In order to have a good die it is important that die wear which is an inevitable phenomenon in a bulk metal forming processes is predicted mathematically. In this study a review on the vast number of studies done in the area of wear and various predictive models is carried out.
Technical Paper

Design & analysis of 2 point aluminum upper control arm in modular multi link rear suspension system

2019-11-21
2019-28-2564
In current automobile market, due to the need of meeting future CO2 limits and emission standards, demand for hybrid systems is on the rise. In general, the requirements of modern automobile architecture demands modular chassis structure to develop vehicle variants using minimum platforms. The multi-link modular suspension system provides ideal solution to achieve these targets. To match ideal stiffness characteristics of system with minimum weight, aluminum links are proving a good alternative to conventional steel forged or stamped linkages. Design of current 2-point link (Upper Control Arm) is based on elasto-kinematic model developed using standard load cases from multi body dynamics. CAD system used is CATIA V5 to design upper control arm for rear suspension. This arm connects steering knuckle & rear sub frame. For Finite Element Analysis we used Hyperworks CAE tool to analyze design under all load cased & further optimization is done to resolve highly stressed zones.
Technical Paper

Accelerated structural durability testing of backhoe loader by creation of duty cycle from field data to predict failure modes.

2019-11-21
2019-28-2583
These days backhoe loader have become main part of construction equipment vehicles. The main function of backhoe is to dig ditches to lay pipes and underground cable, set up foundations for buildings and create drainage systems. During these operations, many failures are observed in backhoe loader structure/parts. With the help of Accelerated structural durability testing, life of backhoe loader & its part can be estimated; through which we can understand different failure modes. The real time data was collected during various operations which includes pit digging, duck walk, ditch climbing, levelling, dozing, piling, truck loading etc. We have used software based approach to process the strain, displacement and other data collected during real time operation to create the duty cycle. The same duty cycle was simulated in the lab condition using servo hydraulic actuators.
Technical Paper

STATISTICAL ANALYSIS OF LOW CYCLE FATIGUE PROPERTIES IN METALS FOR ROBUST DESIGN

2019-11-21
2019-28-2576
Objective: In ground vehicle industry, strain life approach is commonly used for predicting fatigue life. This approach requires use of fatigue material properties such as fatigue strength coefficient (σf'), fatigue strength exponent (b), fatigue ductility coefficient (εf'), fatigue ductility exponent (c), cyclic strength coefficient (K′) and cyclic strain hardening exponent (n′). These properties are obtained from stable hysteresis loop of constant amplitude strain-controlled uniaxial fatigue tests. Usually fatigue material properties represent 50th percentile experimental data and doesn't account possible material variation in the fatigue life calculation. However, for robust design of vehicle components, variation in material properties need to be taken into account. In this paper, methodology to develop 5th percentile (B5), 10th percentile (B10) and 20th percentile (B20) fatigue material properties are discussed.
Technical Paper

SELF EXPRESSIVE & SELF HEALING CLOSURES HARDWARES FOR AUTONOMOUS AND SHARED MOBILITY

2019-11-21
2019-28-2525
Shared Mobility is changing the trends in Automotive Industry and its one of the Disruptions. The current vehicle customer usage and life of components are designed majorly for personal vehicle and with factors that comprehend usage of shared vehicles. The usage pattern for customer differ between personal vehicle, shared vehicle & Taxi. In the era of Autonomous and Shared mobility systems, the customer usage and expectation is high. The vehicle needs systems that will control customer interactions (Self-Expressive) & fix the issues on their own (Self-Healing). These two systems / methods will help in increasing customer satisfaction and life of the vehicle. We will be focusing on vehicle Closure hardware & mechanisms and look for opportunities to improve product life and customer experience in ride share and shared mobility vehicles by enabling integrated designs, which will Self-Express & Self-Heal.
Technical Paper

Analysis and Aerodynamic Stability on Design of Low cost and Economical Monocopter

2019-11-21
2019-28-2523
Most recent or all developments in the field of small UAV’s seem to use Quadcopters. It’s a valued commenting that a quadcopter is a smaller amount stable than a similar regular chopper and is additionally less economical. A Quadcopter UAV’s with four propellers is always a major concern to the society when brings to its stability as its major factor. To design and analyze the use of one propeller monocopter is the main objective of this paper. Wacky Whirler technology used here to demonstrate the passage of the monocopter. It is a single propeller powered with a coreless motor which is a modern enhancement in the UAV. It is based on the All Rotating monocopter theory. In the proposed system, controller based on IOT can be used which will be helpful in monitoring and processing the microdrone status.
Technical Paper

Machine Learning considerations in the context of Automotive Functional Safety Requirements for Autonomous Vehicles

2019-11-21
2019-28-2519
We are currently in the age of developing Autonomous Vehicles (AV). Never before in history, the environment has been as conducive as today for these developments to come together to deliver a mass produced autonomous car for use by general public on the roads. Several enhancements in hardware, software, standards and even business models are paving the way for rapid development of AVs, bringing them closer to production reality. Safety is an indispensable consideration when it comes to transportation products, and ground vehicle development is no different. We have several established standards. When it comes to Autonomous Vehicle development, an important consideration is ISO 26262 for, Automotive Functional Safety. Going from generic frameworks such as Failure Mode and Effects Analyses (FMEA) and Hazard and operability study (HAZOP) to Functional Safety, Safety of Intended Functionality, and Automotive Safety Integrity Levels specific is a natural progression.
Technical Paper

Enhancement of safety features of steering wheel using experimentally validated finite element model

2019-11-21
2019-28-2556
Automotive safety is the primary concern in the current world. In order to develop safe and crashworthy vehicles, phenomena behind the energy absorption characteristics of every automotive component must be known. Steering wheel is one of the key players which could cause severe injuries to the driver if sufficient safety measures are not considered. This research focuses on the crash performance of commercial vehicle steering as per head form and body block test prescribed in ECE R12. Detailed FE (Finite Element) model of the steering wheel including armature, horn pad was developed using nonlinear material properties. The model was first validated using the test results. Comparisons between experimental results and finite element analysis results were conducted and correlated using load versus displacement profiles over the duration of impact. A good relationship between test and FE results was found which allows for investigation into the energy analysis of the steering components.
Technical Paper

Photo oxidation analysis method for automotive coating weathering performance evaluation

2019-11-21
2019-28-2555
RESEARCH OBJECTIVE Accelerated artificial weathering performance has been always observed as critical and most important factor for durability prediction of colour and resin for a coating system. Photo oxidation of resin is the phenomenon behind coating’s ageing. Though accelerated weathering tests protocols are widely used in industry, they are very costly and still very time consuming. One automotive grade accelerated testing can go as long as 8 months duration. METHODOLOGY (maximum 150 words) Photo oxidation value (POV) is proportionate to the degradation of the resin material used in coating. During the accelerated weathering POV is measured for the coating at stipulated interval during initial phase and trend is plotted for deterioration verses weathering test duration. POV can be analysed with the help of FTIR analysis to observe bond absorption energy and bond separation energy in the resin system. This trend can be extrapolated to predict the weathering performance of coating.
X