Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Improvement of Hydraulic system tests in Aircraft Manufacturing by applying Lean techniques

2019-09-16
2019-01-1901
Lean Manufacturing is generally a challenge across all manufacturing companies. Especially in the aerospace industry where production costs have a significant impact on the overall business success. Additionally, the aircraft Takt time is gradually being reduced to accomplish ramp up requirements. The hydraulic system tests are considered as a production waste (Muda Type I) since it is mandatory but does not add any value to the end customer. Furthermore, due to health and safety aspects, no other production task can be done while the test is being performed. This research project aimed at performing a Kaizen analysis of the hydraulic system test stations to reduce or eliminate idle time while it is taking place. To do so, an extensive literature review has be conducted to provide its research framework. Then, all the project requirements and constraints were identified in order to generate a design specification.
Technical Paper

Investigation into the benefits of implementing a fully integrated MRO Software system in Airlines Maintenance and Engineering

2019-09-16
2019-01-1908
Case studies of various MRO organizations were researched in order to gain a better understanding of the business procedures used in each department of an aircraft maintenance company. The software systems available to aid business processes were researched to understand the computer processes, functions and operational requirements of these software programs. The planning and scheduling of inventory and manpower resources is complex and requires various parameters to be computed by the software systems in order to adequately plan the necessary aircraft maintenance resources. Case studies of aircraft maintenance companies that previously implemented integrated IT software solutions to control and monitor department functions were researched to identify and understand the various problems encountered by these companies during the software implementation phase.
Training / Education

Effective Writing for Engineering and Technical Professionals

2019-09-09
The ability to write concise and unambiguous reports, proposals, manuals, or other technical documents is a key skill for any high-functioning engineer or technical staff person in the mobility industries. Through a combination of class discussions, interactive workshop activities, assignments, checker teams (review teams) and job aids, this course delivers real-life technical writing techniques and tools that can be immediately applied. Attendees discover the importance of knowing their audiences and how to communicate technical information in a "user-friendly" style.
Technical Paper

High-speed imaging of a vaporizing GDI spray: a comparison between Schlieren, Shadowgraph, DBI and Scattering

2019-08-15
2019-24-0037
The evolution of the liquid and vapor phases of an iso-octane GDI spray was investigated in a constant volume vessel, under inert environment, using high-speed imaging techniques. The tests were performed in nitrogen, at temperatures and density varying between the operating conditions representative of late injection, flash boiling conditions and early injection in a GDI engine. Large scale parameters of the spray (penetration length, spray angle, projected area) were obtained by processing schlieren, shadowgraph, DBI and scattering images. The segmentation of spray images, for both the liquid and vapor phase, was carried out through a novel image processing method. The method bases upon an "optimal" filtering of spray images by means of variational methods, an original thresholding procedure based on the iterative application of the Otsu's method, and the highlighting of the schlieren/shadowgraph textures of the vapor phase through the main curvatures of the image surface.
Technical Paper

An embedded simulation approach for tolerance analysis on vehicle propulsion subsystem

2019-08-15
2019-24-0079
An increasing demand for reducing cost and time effort of the design process via improved CAE (Computer-Aided Engineer) tools and methods has characterized the automotive industry over the past two decades. One of the main challenge regarded the effective simulation of a vehicle’s propulsion system dealing with different physical domains: several examples have been proposed in literature mainly based on co-simulation approach which involves a specific tool for each propulsion system part modeling. Nevertheless, these solutions are not fully suitable and effective to perform statistical analysis including all physical parameters. In this respect, this paper presents the definition and implementation of a new simulation methodology applied to a propulsion subsystem.
Technical Paper

Imaging and vibro-acoustic diagnostic techniques comparison for a GDI fuel injector

2019-08-15
2019-24-0058
This work presents the results of an experimental investigation on a GDI injector, in order to analyze fuel injection process and atomization phenomenon, correlating imaging and vibro-acoustic diagnostic techniques. A single-hole, axially-disposed, 0.200 mm diameter GDI injector was used to spray commercial gasoline in a test chamber at room temperature and atmospheric backpressure. The explored injection pressures were ranged from 5.0 to 20.0 MPa. Cycle-resolved acquisitions of the spray evolution were acquired by a high-speed camera. Contemporarily, the vibro-acoustic response of the injector was evaluated. More in detail, noise data acquired by a microphone sensor were analyzed for characterizing the acoustic emission of the injection, while a spherical loudspeaker was used to excite the spray injection at a proper distance detecting possible fuel spray resonance phenomena.
Technical Paper

Large Eddy Simulations and Tracer-LIF Diagnostics of wall film dynamics in an optically accessible GDI research engine

2019-08-15
2019-24-0131
Large Eddy Simulations (LES) and tracer-based Laser Induced Fluorescence (LIF) measurements have been performed to study the dynamics of fuel wall-films on the piston top of an optically accessible, four-valve pent-roof GDI research engine for a total of eight operating conditions. Starting from a reference point, the systematic variations include changes in engine speed (600; 1,200 and 2,000 RPM) and load (WOT and 500 mbar intake pressure); concerning the fuel path the Start Of Injection (SOI=360°, 390° and 420° CA after gas exchange TDC) as well as the injection pressure (10, 20 and 35 MPa) have been varied. For each condition, 40 experimental images were acquired phase-locked at 10° CA intervals after SOI, providing valuable insights with respect to the wall film dynamics in terms of spatial extent, thickness and temperature.
Technical Paper

Experimental characterization of methane direct injection from an outward-opening poppet-valve injector

2019-08-15
2019-24-0135
The in-cylinder direct injection of natural gas represents a further step towards cleaner and more efficient internal combustion engines (ICE). However, the injector design and its characterization, either experimentally or from numerical simulation, is challenging because of the complex fluid dynamics related to gas compressibility. In this work, the underexpanded flow of methane from an outward-opening poppet-valve injector has been experimentally characterized by Schlieren and Shadowgraph high-speed imaging. The jet evolution was also followed through Mie-scattering imaging using n-heptane droplets as a tracer. The investigation has been performed at ambient temperature and pressure and different nozzle pressure ratios (NPR) ranging from 10 to 17. The gaseous jet has been characterized in terms of its macroscale parameters.
Standard

Oil, Reference, for "L" Stock Rubber Testing

2019-06-13
WIP
AMS3020B
This specification covers a petroleum-base reference oil. This fluid has been typically used as a reference oil to estimate the ability of elastomeric compounds to conform to specified requirements after immersion at a specified temperature for a specified time and temperature as required by the material.
Standard

Messages for Handling Strings and Look-up Tables in ATIS Standards

2019-06-11
CURRENT
J2540_201906
This SAE Standard defines methods and messages to efficiently translate sequences of text and other types of data into and out of indexed values and look-up tables for effective transmission. This document defines: a. Methods and Data Elements for handling indexes and strings in ATIS applications and message sets b. Message Sets to support the delivery and translations of tables used in such strings c. Tables of Nationally standardized strings for use in ATIS message descriptions And examples of each in illustrative portions. While developed for ATIS use, the methods defined in this document are useful for any textual strings in any Telematics applications found both in Intelligent Vehicles and elsewhere.
Technical Paper

Radar Detection of High Concentrations of Ice Particles - Methodology and Preliminary Flight Test Results

2019-06-10
2019-01-2028
High Ice Water Content (HIWC) has been identified as a primary causal factor in numerous engine events over the past two decades. Previous attempts to develop a remote detection process utilizing modern commercial radars have failed to produce reliable results. This paper discusses the reasons for previous failures and describes a new technique that has shown very encouraging accuracy and range performance without the need for any modifications to industry’s current radar design(s). The performance of this new process was evaluated during the joint NASA/FAA HIWC RADAR II Flight Campaign in August of 2018. Results from that evaluation are discussed, along with the potential for commercial application, and development of minimum operational performance standards for future radar products.
Technical Paper

Experimental Processing of Methodical Questions of Modeling the Atmospheric Cloud Containing Ice Crystals and Mixed Phase

2019-06-10
2019-01-1922
In Central Institute of Aviation Motors (Moscow, Russia) over the past few years, work has been carried out on upgrading the test cell to simulate the conditions of ice crystals and mixed phase in accordance with regulatory requirements. The key feature of this test cell is that it is a high-altitude climate test rig with the possibility of creating altitude conditions up to an altitude of 15 km, as well as creating a high-speed stream up to 0.85 Mach number and temperatures up to −40°С. The diameter of the wind tunnel of this test cell is 1.02 meters. The layout of the test rig includes a manifold for bringing ice crystals into the stream, as well as a water spray manifold. With the help of a water spray manifold, it is possible to produce supercooled droplets in the stream. Using two collectors at once gives opportunity to create a wide range of conditions for both ice crystals and mixed phase.
Technical Paper

Simulations of Thin Film Dynamics on a Flat Plate and an Airfoil

2019-06-10
2019-01-1938
The goal of the present study is to investigate the dynamics of a thin water film on a flat plate and an airfoil using direct numerical simulation (DNS). The first case for a wetted flat plate is used to model former experiments and investigate the dynamics of a wind-driven water film. The second case for a thin film on a NACA 0012 airfoil of chord length 0.5 m is used to investigate the dynamics of a wind-driven water film on a curved surface. Particular attention is paid to the interaction between the liquid film and the air shear-layer above the film. As the incoming airflow moves over the thin water film, instability is triggered at the gas-liquid interface. Interfacial waves develop and are advected downstream. The interaction between the air flow and the interfacial waves induces shedding vortices near the interface, which in turn perturb the liquid film farther downstream. Simulations are performed using the open source multiphase flow solvers, Gerris and Basilisk.
Technical Paper

Icing Test and Measurement Capabilities of the NRC’s Gas Turbine Laboratory

2019-06-10
2019-01-1943
The National Research Council’s Gas Turbine Laboratory provides industry leading icing facilities that allow manufacturers to develop, validate and certify new products for flight in adverse conditions. This paper shows how NRC measurement techniques are used across the facilities, and presents a literature-review of recently developed capabilities. The overview includes new details on some facilities, and future capabilities that are in development or planned for the near future. Methods developed at the NRC for characterizing inclement conditions are discussed and include the Isokinetic Probe, Particle Shadow Velocimetry, the Particle Detection Probe, and a size-binned real-time thermodynamic evaporation model.
Technical Paper

A Continuing Investigation of Diurnal and Location Trends in an Ice Crystal Icing Engine Event Database

2019-06-10
2019-01-1964
Due to ongoing efforts by the aviation industry, much has been learned over the last several years regarding jet engine power loss and compressor damage events caused by the ingestion of high concentrations of ice crystal particles into the core flow path. Boeing has created and maintained a database of such ice crystal icing (ICI) events to aid in analysis and further study of this phenomenon. This article provides a general update on statistics derived from the Boeing event database, and provides more details on specific event clusters of interest. A series of three flight campaigns have, over the past five years, collected in-situ data in deep convective clouds that will be used for the assessment of the new FAA CFR Part 33 ice crystal environmental envelope Appendix D, and the equivalent EASA CS-25 Appendix P.
X