Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Applied Brake Controls ABS, TCS, and ESC

2020-01-27
Experience the vehicle dynamic enhancements afforded by anti-lock brakes (ABS), traction control (TCS), and electronic stability control (ESC) with this highly interactive two-day seminar. Designed to get you out of the classroom and on to the test track, a total of six 60-minute structured learning experiences behind the wheel will vividly illustrate the benefits, limitations, and ultimate compromises that must be made when designing and implementing modern brake control systems.
Training / Education

Fundamentals of Vehicle Suspension Design

2019-12-05
The design and development of vehicle suspensions significantly influences vehicle handling and ride comfort. Suspension system design excellence follows the basic laws of physics using design synthesis techniques, a methodical process for suspension geometry development. Suspension geometry is the foundation of vehicle performance from which high-confidence suspension components and tunings can be developed. Suspension component design continues to move toward mass and cost efficient designs with high levels of stiffness being essential to achieving design requirements.
Technical Paper

REDUCTION OF STEERING VIBRATION WITH THE APPLICATION OF DYNAMIC TESTING AND ANALYSIS

2019-11-21
2019-28-2421
KEYWORDS: Steering System, Engine Vibrations, Dynamics, Modal Testing, Modal Analysis, ABSTRACT - In modern agriculture, the tractor’s use is indispensable and essential for various operations like cultivation, soil preparation, pulverization and many more. However, despite being efficient machines, tractors may be subjected to different level of vibrations in various parts of their structure. The vibration often plays the key cause of invalidation and component failures and also, affecting the ride and comfort. Since it is known that such vibration factors can affect the behavior in many ways, an understanding of their dynamic response is warranted. In this paper, case study related to reduction of steering system vibration is presented. Objective and Background: Vibration reduction is linked with the reduction either at source or on path. For such, it is necessary to know the reality of machines, component and mechanisms to mitigate the vibration levels on the tractor.
Technical Paper

A new appraisal of the thermomechanical behaviour of a hybrid composite brake disc in a formula vehicle

2019-11-21
2019-28-2572
A new appraisal of the thermomechanical behaviour of a hybrid composite brake disc in a formula vehicle Research Objective This paper presents a hybrid composite brake disc with reduced Un Sprung Weight clearing thermal and structural analysis in a formula vehicle.Main purpose of this study is to analyse thermomechanical behaviour of composite brake disc for a formula vehicle under severe braking conditions. Methodology In the disk brake system, the disc is a major part of a device used for slowing or stopping the rotation of a wheel. Repetitive braking of the vehicle leads to heat generation during each braking condition. Based on the practical understanding the brake disc was remodelled with unique slotting patterns and grooves, using the selected aluminium alloy of (AA8081) with reinforcement particle of Silicon carbide (SiC) and Graphite (Gr) as a hybrid composite material for this proposed work.
Technical Paper

Semi-autonomous parking assist system (SA-PAS)

2019-11-21
2019-28-2529
This paper describes the Semi-autonomous parking assist system (SA-PAS) developed using combination of high accuracy position sensing and electronic power steering. A real-time system that helps driver to identify the parking space and assist to perform maneuvers. Parking is often a difficult task, especially for inexperienced drivers. Starting with the problem of having to find a suitable parking spot, to then maneuvering in to it without colliding with anything or anyone, while trying avoiding disturbing the surrounding traffic. The numbers of vehicles are rapidly increasing as compared to the expansions of roads and parking spaces. Therefore, effective use of the existing spaces is needed (by making them narrower), which can cause inconvenience to many drivers. Semi-autonomous parking assist system searches for suitable space and steers the vehicle into it, while driver has to control the gear shifter, accelerator and brakes.
Technical Paper

NEXT GENERATION POWER DISTRIBUTION UNIT IN WIRING HARNESS

2019-11-21
2019-28-2571
Keywords – Miniaturization, Low Profile (LP) Relays, Low Profile (LP) Fuses, Fuse box, Wiring Harness Research and/or Engineering Questions/Objective With the exponential advancement in technological features of automobile’s EE architecture, designing of power distribution unit becomes complex and challenging. Due to the increase in the number of features, the overall weight of power distribution unit increases and thereby affecting the overall system cost and fuel economy. The scope of this document is to scale down the weight and space of the power distribution unit without compromising with the current performance. Methodology Miniaturization involves replacing the mini fuses and J-case fuses with LP mini and LP J-case fuses respectively. The transition doesn’t involve any tooling modification and hence saves the tooling cost.
Technical Paper

Realtime Tuning and optimization of EV traction motors with controllers on E-motor testbench

2019-11-21
2019-28-2478
The need for dedicated development of indigenous electric power-train is becoming much essential in the recent times with upcoming trends and policies. Hence, The validation and optimization of the newly developed electric power-train becomes much crucial in order to ensure smooth real world operation. This can be only possible in E-motor test benches with dedicated equipment for thorough evaluation. Also, there are no practical limitations to check the peak characteristics in a controlled laboratory environment. Initially, the motor is setup by mechanically coupling with the dynamo-meter and the controller in the open loop method with constant parameters to check steady state operability without load or external parameters that affect the torque production and speed of the drive. Then progresses to closed loop method incorporating the feedback control and external parameters including torque loading at the shaft from the dynamo-meter.
Technical Paper

PMSM motor drive for Electric Vehicle applications

2019-11-21
2019-28-2475
To control air pollution in urban areas and to reduce carbon print in the cities, nowadays EV’s are preferred over IC engine vehicles. Earlier Electric vehicles used DC motor and Induction motors. But Brushless Permanent Magnet motors are preferred over Induction motor for EV’s due to their High Torque density, high-power density and highly efficiency. Prevalent Electric vehicles today have Brushless DC motors. Compared to BLDC, PMSM motor have smoother control and negligible torque ripplesThus, PMSM motor is preferred over BLDC for Electric Vehicle, because of its sinusoidal back emf which results in smoother control, and results into smoother and more comfortable driving experience to users. Methodology Sensor based field-oriented control (FOC) is implemented in 48 V 5kW Interior PMSM motor. . To start the Synchronous motor initial position of the rotor magnetic field should be known.
Technical Paper

Rapid Prototyping and Implementation of traction motor drive for E- Mobility

2019-11-21
2019-28-2472
Objective / Question: Is it possible to extend the envelope of simulation driven design and its advantages to development of complex dynamic systems viz. traction motor drives? The objective that then follows is how to enable OEM/Tier-1s to reduce wastes in the process of traction motor controller design, development, optimization and implementation. Motor control design to validation process is time consuming and tricky! Additionally, the requirement of software knowledge to write code to implement drive engineer's control ideas. The challenges here are - to name a few - algorithm for real time, addressing memory constraints, debugging, comprehending mathematical overflows, portability & BOM cost. These introduces wastes in parameters like time, cost, performance, efficiency and reliability. Methodology: Developing a new traction motor controller for E Mobility takes 18 - 24 months typically. 2 distinct activities take place in a loop.
Technical Paper

Performance & efficiency Improvement of Electric Vehicle Power train

2019-11-21
2019-28-2483
Introduction: The advent of electric mobility is changing the conventional mobility techniques and their application in automobiles across all segments. This development comes with challenges ranging across varied sub -systems in a vehicle including Power Train, HVAC, Accessories, etc. Objective: This paper would concentrate on the Power train related sub systems & improvement of the same both in terms of Efficiency & Performance. Methodology: The electric power train consists of three major sub parts: 1. Motor Unit 2. Controller with Power electronics 3. Battery Pack with BMS We would concentrate on improving the overall efficiency and performance of all these subsystems while they perform in vehicle environment and work in tandem by deploying following techniques: a. Improved Regenerative Braking for converting vehicles Kinetic energy into electrical energy using specific algorithms and control techniques b.
Technical Paper

Design and Development of Industrial Automotive Battery Management system

2019-11-21
2019-28-2498
Battery operated vehicle need accurate management system because of its quick changes in State of charge (SOC) due to aggressive acceleration profiles and regenerative braking. Li-ion battery needs control over its operating area for its safe working. So, the main objective of the proposed system is to develop a BMS having algorithms to estimate accurate SOC, predict degradation parameters, balance individual cells, manage cell temperature, and provide safe area of operation defined by voltage and temperature. Proposed methodology uses Model-based Design approach wherein nonlinear behavior of battery is modeled as Equivalent Circuit Model to compute the SOC and degradation effect on battery to decide the end of life of battery, also performing inductive Active balancing on cells to equalize the charge. proposed algorithms communicate with the vehicle ECU through CAN to assist the driver for runtime estimation, time for battery swapping, Alerts.
Technical Paper

ELECTRIC BICYCLE WITH REGENERATIVE BRAKING SYSTEM

2019-11-21
2019-28-2490
One of the significant challenges in the present scenario is the depletion of fossil fuels. As the use of conventional fuel is increasing day by day, it will lead to the complete depletion of fossil fuel in the future. So, an alternate solution to this problem is the use of electric vehicles which is independent of the dependence on fossil fuels. Electric vehicles (EVs) use batteries to power them and are electric motor driven. One advantage of using these electric vehicles is that they are pollution free and smokeless. One of the critical limitations of these electric vehicles is the low driving range per charge. The main proposal of this paper is the implementation of a regenerative braking system (RBS) which helps in recovering the kinetic energy that gets wasted during braking. RBS will be very useful in hilly terrain areas where much potential energy can get recovered while moving down the hill.
Technical Paper

Transient Response Analysis and Synthesis of an FSAE Vehicle using Cornering Compliance

2019-11-21
2019-28-2400
OBJECTIVE Race vehicles are designed to achieve higher lateral acceleration arising at cornering conditions. A focused study on the steady state handling of the car is essential for the analysis of such conditions. The transient response analysis of the car is also equally important to achieve best driver-car relationship and to quantify handling in the range suitable for a racing car. This research aims to investigate the design parameters responsible for the transient characteristics and optimize those design parameters. This research work examines the time-based analysis of the problem to truly capture the non-linear dynamics. Apart from tires, chassis can be tuned to optimize vehicle handling and hence the response times. METHODOLOGY To start with, the system is modelled with governing parameters and simulation is carried out to set baseline configurations. Steady state and transient handling simulations run independent of each other with independent logic, coded on MATLAB.
Technical Paper

Combi Brake System (CBS) design and tuning on an electric two wheeler for cornering maneuver

2019-11-21
2019-28-2399
To reduce the number of traffic accidents, most of the governments have mandated to include Combi Brake System (CBS) or Anti-lock Braking System (ABS) in two wheelers. While most of the homologation requirements for CBS can be fulfilled by straight line motion, CBS behavior is crucial while cornering for safety aspects. When vehicle is in cornering motion, the lateral forces generated at the tire decreases the effective longitudinal force available, which implies lesser braking force at tire. This paper represents a design methodology for tuning CBS for various critical scenarios mainly during cornering maneuver. A detailed study has been made at various combination of vehicle lean angle, vehicle speed and friction coefficient of road in straight line and cornering maneuver to effectively decide on front to rear brake force distribution to avoid either of the tires’ lock-up.
Technical Paper

Optimization of the critical parameters affecting the fuel lid performance

2019-11-21
2019-28-2413
Fuel lid is one of the parts which are mostly operated mechanically by the end user while filling the fuel. Therefore part design should be done in such a manner that it can be operated smoothly without any hassles. The conventional steel fuel filler doors are of two types: Three-piece type fuel filler doors also known as the dog-leg type and two-piece type fuel filler doors also known as the butterfly type. Both types of fuel filler doors have a pin that acts as a rotational hinge axis about which the fuel filler door opens and closes. Depending on the styling and shape of the side body outer, fuel lid type is decided. In the current study, dog-leg type fuel lid is considered. The factors that primarily affect the opening-closing performance are the weight of fuel lid, hinge axis, and the friction at the hinge area. The orientation of the hinge axis is derived from the profile of the side body outer panel. The fuel lid weight and hinge axis are decided in the initial design stage.
Technical Paper

Correlation of Objective and Subjective test results for Ride comfort with Heave, Pitch and Roll motion for a Passenger Vehicle

2019-11-21
2019-28-2410
Research Objective The importance of evaluating ride comfort with high degrees of accuracy objectively and its correlation with subjective perception is increasing day by day because of the long duration of the driving experience. The complex motion of the vehicle which is the combination of heave, roll and pitch motion is responsible for causing extreme uneasiness to the driver as well as the passenger. In this paper, ride comfort evaluation is done on the highway with similar traffic conditions with the help of Vibration Dose Value Analysis, Suspension Working Space and Ride Diagram methods for two hatchbacks and its correlation with the complex motion like choppiness of the vehicle is established that will help us to enhance the driver ride experience. Methodology The ride testing is performed for two hatchbacks on a highway road with different kinds of terrain ranging from highly uneven road roughness to moderately smooth surface for a speed range of 60-100 kmph.
Technical Paper

Performance Gains of Load Sensing Brake Force Distribution in Motorcycles

2019-11-21
2019-28-2426
Commercial motorcycles and scooters incorporate independent circuits for front and rear brake actuation, thus precluding load dependent brake force distribution. In all cases of manual brake force modulation between the front and rear wheels, there is poor compensation for the changes in wheel loads on the account of longitudinal weight transfer, thus making it is challenging to provide an adequate braking force to each wheel. The ratio in which the braking force should be distributed between the front and the rear wheels is dependent on the motorcycle geometry, weight distribution, mechanical sizing of braking system components, and is a variable based on the deceleration. This connotes that a fixed value of front and rear braking forces can be optimized for only a narrow range of motorcycle’s deceleration. Maximum braking performance occurs just prior to wheel lockup, as a sliding tire provides less grip than a rolling tire.
Technical Paper

Multi body dynamic simulation of tyre traction trailer

2019-11-21
2019-28-2430
Tyre Traction Trailer is a device designed to find the Peak Brake co-efficient of C2 and C3 tyre as per ECE R117. The trailer is towed by the truck and is braked suddenly to evaluate braking co-efficient of specimen tyre. It is a single wheel trailer equipped with load cell to capture tire loads (Normal and longitudinal)while braking. Traction Trailer is modelled in MSC Adams and rigid body simulation is carried out for static stability of the system. Dynamic simulations were performed to understand locking of wheels during braking. Body frame was further modelled as flex body to perform structural analysis of the frame. The paper contains stress and deformation plots of trailer Structure under various loading conditions, change in Centre of gravity, weight transfer and forces on springs during braking and cornering, plots of tractive and normal load on tyre during braking.
X