Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Designing On-Board Diagnostics for Light and Medium Duty Emissions Control Systems

2020-10-20
On-board diagnosis of engine and transmission systems has been mandated by government regulation for light and medium vehicles since the 1996 model year. The regulations specify many of the detailed features that on-board diagnostics must exhibit. In addition, the penalties for not meeting the requirements or providing in-field remedies can be very expensive. This course is designed to provide a fundamental understanding of how and why OBD systems function and the technical features that a diagnostic should have in order to ensure compliant and successful implementation.
Training / Education

Advanced Diesel Particulate Filtration Systems

2020-09-18
As diesel emissions regulations have become more and more stringent, diesel particulate filters (DPF) have become possibly the most important and complex diesel aftertreatment device. This seminar covers many DPF-related topics using fundamentals from various branches of applied sciences such as porous media, filtration and materials sciences and will provide the student with both a theoretical as well as an applications-oriented approach to enhance the design and reliability of aftertreatment platforms.
Training / Education

Powertrain Selection for Fuel Economy and Acceleration Performance

2020-04-13
Developing vehicles that achieve optimum fuel economy and acceleration performance is critical to the success of any automotive company, yet many practicing engineers have not received formal training on the broad range of factors which influence vehicle performance. This seminar provides this fundamental understanding through the development of mathematical models that describe the relevant physics and through the hands-on application of automotive test equipment. Attendees will also be introduced to software used to predict vehicle performance.
Training / Education

Emissions-Related OBD Systems A Design Overview

2020-03-27
On-board diagnostics, required by governmental regulations, provide a means for reducing harmful pollutants into the environment. Since being mandated in 1996, the regulations have continued to evolve and require engineers to design systems that meet strict guidelines. This one day seminar is designed to provide an overview of the fundamental design objectives and the features needed to achieve those objectives for generic on-board diagnostics. The basic structure of an on-board diagnostic will be described along with the system definitions needed for successful implementation.
Technical Paper

Aerodynamic analysis of commercial vehicle using active vortex generators concept

2019-11-21
2019-28-2409
Any physical body being propelled through the air has drag associated with it. Drag will be created on the surface of the vehicle due to the flow separation at the rear end. In aerodynamics the flow separation can often result in increased drag particularly pressure drag, to delay the flow separation, the vortex generators are used on the roof end of the vehicle just before the point of flow separation. The objective of this project is to perform aerodynamic analysis of commercial vehicle using active vortex generators concept. First, the aerodynamic analysis of a baseline commercial vehicle model is performed and same is validated with the scaled model by using a wind tunnel test. Further analysis has been done by using active vortex generators concept with variation of angle of attacks for vehicle speed of 50, 70, 90 kmph. Also, analysis has been carried out for six different yaw angles. The simulation is carried out with the use of ANSYS Fluent.
Technical Paper

Effect of variable payload on Vehicle dynamics of Passenger buses in Indian usage conditions

2019-11-21
2019-28-2411
A high impetus from Government on road infrastructure development, is giving a fillip to passenger CV space. This has resulted in making the passenger CV segment lucrative enough, thereby pulling in many operators in the business. The quality of road has immensely improved over a decade, as a result of which the average speed and hence the quantum of distance covered by passenger buses has increased significantly. People are preferring to travel in buses over trains, owing to at par ticket cost, high availability, reduced travel time and also improved level of comfort. Aligned to the market need and the trend, OEM's are offering buses with capable powertrains to cater the need of speed, reduced trip time as well as a lot of attention is also being paid to tune in the comfort level for long hauls. A big chunk of passenger travel is catered by the bus operators especially during major festivals in India.
Technical Paper

Design and Analysis of Hydrostatic Transmission (HST) system for OFF-Highway vehicle

2019-11-21
2019-28-2453
The development of any country depends on capital energy consumption. Due to technological advancements, people want more comfort and performance with the tractors and at the same time less fatigue and reduced fuel consumption. At present, most of the tractors uses conventional Manual Transmission (MT) as main driveline, though there is research going on, with implementation in few cases, for shifting from conventional MT to advanced transmissions. A Continuously Variable Transmission (CVT) provides Step Lesley an infinite number of effective gear ratios between maximum to minimum value. Hydrostatic Transmission (HST) is one of the types of CVT. HST can improve the fuel efficiency and smooth drivability than a MT without compromising vehicle performance. The development of HST in tractor is less costly as several existing components such as clutch, large number of gears in transmission system can be removed along with reducing of driver fatigue.
Technical Paper

Analysis Of GaN Based BLDC Motor Drive For Automotive Application

2019-11-21
2019-28-2471
Objective Automotive sector is rapidly moving towards electric vehicle. BLDC motor is gaining popularity in the field of electric vehicle due to its high torque to weight ratio and simple control. In this paper we will focus on Switching loss characterization of 3 kW GaN based BLDC drive for electric vehicle. To improve efficiency of drive gallium-nitride based power transistor is used instead of Si MOSFET. GaN devices enable the design of inverter at higher frequencies with improved power density and efficiency as compared to traditional Si MOSFETs. Methodology In this paper commercially available GaN devices compared with Si MOSFETs. The power devices, which are selected for the performance comparison, are EPC2022 GaN by EPC, GS61008P GaN by Gan System and SiDR668DP Si MOSFET by Vishay. The Switching losses analytically predicted in MATHCAD tool and then compared with SPICE simulation losses. Double pulse test circuit is used to find out power losses of power transistors.
Technical Paper

Review of architecture and control strategies of Hybrid Electric and Fuel Cell Technology for Automotive Application

2019-11-21
2019-28-2509
Well-functioning and efficient transport sector is a requirement for economic and social development in the 21st century. Another side of this transport sector is responsible for a many negative social and environmental effects, like a significant contribution to global greenhouse gas emissions, air pollution and reduction in fossil fuels resources. It is need of time to shift to a greener and low carbon economy and for that it is necessary to improve the ways in which energy is produced and used. Other energy sources like battery, fuel cells (FC), supercapacitors (SC) and photovoltaic cells (PV) are the alternative solutions to the conventional internal combustion engines (ICE) for automobiles. Development of Hybrid electric vehicles (HEV) along with other cleaner vehicle technologies like Fuel cell electric vehicles (FCV), battery electric vehicles are continuously increasing in the list of green energy options.
Technical Paper

Self-Sensing, Lightweight and High Modulus Carbon Nanotube Composites for Improved Efficiency and Safety of Electric Vehicles

2019-11-21
2019-28-2532
Carbon Composites (CFRP) have been touted to be an essential component of future automobiles due to their mechanical properties and lightweight. CFRP has been adopted successfully for secondary and primary structures in Aerospace industry. In Automobiles, they are incorporated in models like the BMW i-series. CFRP suffers from 2 major problems. Delamination of Composites leads to catastrophic and rapid failure which could be dangerous in passenger vehicles. Delamination occurs whenever there is a shock on the composite. Secondly, Composites need regular expensive maintenance to ensure that the material is intact and will not compromise passenger safety. Carbon Nanotubes in composites have shown a substantial increase in delamination resistance. A 0.1wt% addition of HiPCO® Single-walled Carbon Nanotube provides both self-sensing and improved fracture resistance.
Technical Paper

Analysis and Aerodynamic Stability on Design of Low cost and Economical Monocopter

2019-11-21
2019-28-2523
Most recent or all developments in the field of small UAV’s seem to use Quadcopters. It’s a valued commenting that a quadcopter is a smaller amount stable than a similar regular chopper and is additionally less economical. A Quadcopter UAV’s with four propellers is always a major concern to the society when brings to its stability as its major factor. To design and analyze the use of one propeller monocopter is the main objective of this paper. Wacky Whirler technology used here to demonstrate the passage of the monocopter. It is a single propeller powered with a coreless motor which is a modern enhancement in the UAV. It is based on the All Rotating monocopter theory. In the proposed system, controller based on IOT can be used which will be helpful in monitoring and processing the microdrone status.
Technical Paper

Equivalent Radiated Power driven optimization for driveline housings using simulation tools to cut-down the project time

2019-11-21
2019-28-2533
In the field of Automotive industry, being competitive makes you succeed. Industry is moving towards advancement day by day. New technologies to improve fuel efficiency, crash resistance, vehicle noise levels have been trending. At VECV, we have traditionally worked on CAE of driveline housings (clutch housing & transmission housing) based on static, dynamic and transient loadings. Currently, weight optimization technique depends on the structural and dynamic loading conditions, but do not consider acoustic concerns. Powertrain housings are highly prone to vibrations and leads to high level of noise. Noise has been constant issue in the casting components associated to driveline. There have been lot of research going on to reduce the level of noise and vibrations in the vehicle driveline, which ultimately leads to fuel efficiency and ergonomic benefits. Low noise generation can also lead to saving of lot of resources deployed to dampen the noises.
Technical Paper

Experimental Investigation on Performance and Emission Characteristics of a Single Cylinder CRDI Engine Fueled with Diesel-Methanol Blend

2019-11-21
2019-28-2380
The diesel engine is widely used for its high thermal efficiency and better fuel conversion efficiency. However, increasing usage of petroleum fuel and environmental degradation motivates to use renewable biofuels as a replacement to conventional diesel. Biofuels produced from non-edible sources can be used as a partial substitute of diesel for the significant growth of fuel economy and reduction of environmental pollution. Methanol can be implemented as a blended fuel in the diesel without affecting engine design. In this study, the effect of diesel methanol blends and injection parameters such as fuel injection pressure (FIP)and start of injection (SOI) on a common rail direct injection (CRDI) diesel engine performance and emission were investigated. Four blends were prepared by mixing diesel with methanol (5%, 10%, 15% and 20% by mass) and adding a certain amount of oleic acid and iso-butanol to get a stable blend.
Technical Paper

Impact of wheel-housing on aerodynamic drag and effect on energy consumption on an electric bus body

2019-11-21
2019-28-2394
Role of Wheel and underbody Aerodynamics of vehicle in the formation of drag forces is detrimental to the fuel (energy) consumption during the course of operation at high velocities. This paper deals with the CFD simulation of the flow around the wheels of a bus with different wheel housing arrangements. Based on benchmarking, a model of a bus is selected and analysis is performed. The aerodynamic drag coefficient is obtained and turbulence around wheels is observed using ANSYS Fluent CFD simulation for different combinations of wheel-housing- at the front wheels, at the rear wheels and both in the front and rear wheels. The drag force is recorded and corresponding influence on energy consumption of a Bus is evaluated mathematically. A comparison is drawn between energy consumption of bus body without wheel housing and bus body with wheel housing. The result shows a significant reduction in drag coefficient and fuel consumption.
Technical Paper

Aerodynamic analysis of race car using active wing concept.

2019-11-21
2019-28-2395
In high speed race cars, aerodynamics is an important aspect for determining performance and stability of vehicle. It is mainly influenced by front and rear wings. Active aerodynamics consist of any type of movable wing element that change their position based on operating conditions of the vehicle to have better performance and handling. In this work, front and rear wings are designed for race car prototype of race car. The high down force aerofoil profiles have been used for design of front and rear wing. The first aerodynamic analysis has been performed on baseline model without wings using CFD tool. For investigation, parameters considered are angle of attack in the range of 0-18˚ for front as well as rear wing at different test speeds of 60, 80, 100 and 120 kmph. The simulation is carried out by using ANSYS Fluent. The simulation results show significant improvement in vehicle performance and handling parameters.
X