Refine Your Search

Search Results

Viewing 1 to 12 of 12
Journal Article

A Quasi-Dimensional Burn Rate Model for Pre-Chamber-Initiated Jet Ignition Combustion

2023-04-11
2023-01-0184
Prospective combustion engine applications require the highest possible energy conversion efficiencies for environmental and economic sustainability. For conventional Spark-Ignition (SI) engines, the quasi-hemispherical flame propagation combustion method can only be significantly optimized in combination with high excess air dilution or increased combustion speed. However, with increasing excess air dilution, this is difficult due to decreasing flame speeds and flammability limits. Pre-Chamber (PC) initiated jet ignition combustion systems significantly shift the flammability and flame stability limits towards higher dilution areas due to high levels of introduced turbulence and a significantly increased flame area in early combustion stages, leading to considerably increased combustion speeds and high efficiencies. By now, vehicle implementations of PC-initiated combustion systems remain niche applications, especially in combination with lean mixtures.
Technical Paper

Analysis of the Applicability of Water Injection in Combination with an eFuel for Knock Mitigation and Improved Engine Efficiency

2022-06-14
2022-37-0019
The development of future gasoline engines is dominated by the study of new technologies aimed at reducing the engine negative environmental impact and increase its thermal efficiency. One common trend is to develop smaller engines able to operate in stoichiometric conditions across the whole engine map for better efficiency, lower fuel consumption, and optimal conversion rate of the three-way catalyst (TWC). Water injection is one promising technique, as it significantly reduces the engine knock tendency and avoids fuel enrichment for exhaust temperature mitigation at high power operation. With the focus on reducing the carbon footprint of the automotive sector, another vital topic of research is the investigation of new alternative CO2-neutral fuels or so-called eFuels. Several studies have already shown how these new synthetic fuels can be produced by exploiting renewable energy sources and can significantly reduce engine emissions.
Technical Paper

Experimental and Numerical Investigation for Improved Mixture Formation of an eFuel Compared to Standard Gasoline

2021-09-05
2021-24-0019
The increasingly stringent targets for the automotive industry towards sustainability are being addressed not only with the improvement of engine efficiency, but also with growing research about alternative, synthetic, and CO2-neutral fuels. These fuels are produced using renewable energy sources, with the goal of making them CO2-neutral and also to reduce a significant amount of engine emissions, especially particulate matter (PM) and total hydrocarbon (THC). The objective of this work is to study the behavior and the potential of an eFuel developed by Porsche, called POSYN (POrscheSYNthetic) and to compare it with a standard gasoline.
Journal Article

The Virtual Engine Development for Enhancing the Compression Ratio of DISI-Engines Combining Water Injection, Turbulence Increase and Miller Strategy

2020-06-30
2020-37-0010
The increase in efficiency is the focus of current engine development by adopting different technologies. One limiting factor for the rise of SI-engine efficiency is the onset of knock, which can be mitigated by improving the combustion process. HCCI/SACI represent sophisticated combustion techniques that investigate the employment of pre-chamber with lean combustion, but the effective use of them in a wide range of the engine map, by fulfilling at the same time the need of fast load control are still limiting their adoption for series engine. For these reasons, the technologies for improving the characteristics of a standard combustion process are still largely investigated. Among these, water injection, in combination with the Miller cycle, offers the possibility to increase the knock resistance, which in turn enables the rise of the engine geometric compression ratio.
Technical Paper

Virtual Development of Injector Spray Targeting by Coupling 3D-CFD Simulations with Optical Investigations

2020-04-14
2020-01-1157
Further improvements of internal combustion engines to reduce fuel consumption and to face future legislation constraints are strictly related to the study of mixture formation. The reason for that is the desire to supply the engine with homogeneous charge, towards the direction of a global stoichiometric blend in the combustion chamber. Fuel evaporation and thus mixture quality mostly depend on injector atomization features and charge motion within the cylinder. 3D-CFD simulations offer great potential to study not only injector atomization quality but also the evaporation behavior. Nevertheless coupling optical measurements and simulations for injector analysis is an open discussion because of the large number of influencing parameters and interactions affecting the fuel injection’s reproducibility. For this purpose, detailed numerical investigations are used to describe the injection phenomena.
Technical Paper

A Quasi-Dimensional SI Burn Rate Model for Predicting the Effects of Changing Fuel, Air-Fuel-Ratio, EGR and Water Injection

2020-04-14
2020-01-0574
As a result of the R&D focus being shifted from internal combustion engines to electrified powertrains, resources for the development of internal combustion engines are restricted more and more. With that, the importance of highly efficient engine development tools is increased. In this context, 0D/1D engine simulation offers the advantage of low computational effort and fast engine model set-up. To ensure a high predictive ability of the engine simulation, a reliable burn rate model is needed. Considering the increasing interest in alternative fuels, the aspect of predicting the fuel influence on combustion is of special importance. To reach these targets, the change of engine combustion characteristics with changing fuels and changing air-fuel-ratios were investigated systematically in a first step. For this purpose, engine test bed data were compared with expected fuel-dependent flame wrinkling trends based on Markstein/Lewis number theory.
Technical Paper

Predicting the Influence of Charge Air Temperature Reduction on Engine Efficiency, CCV and NOx-Emissions of a Large Gas Engine Using a SI Burn Rate Model

2020-04-14
2020-01-0575
In order to meet increasingly stringent exhaust emission regulations, new engine concepts need to be developed. Lean combustion systems for stationary running large gas engines can reduce raw NOx-emissions to a very low level and enable the compliance with the exhaust emission standards without using a cost-intensive SCR-aftertreatment system. Experimental investigations in the past have already confirmed that a strong reduction of the charge air temperature even below ambient conditions by using an absorption chiller can significantly reduce NOx emissions. However, test bench operation of large gas engines is costly and time-consuming. To increase the efficiency of the engine development process, the possibility to use 0D/1D engine simulation prior to test bench studies of new concepts is investigated using the example of low temperature charge air cooling. In this context, a reliable prediction of engine efficiency and NOx-emissions is important.
Technical Paper

Validity of a Steady-State Friction Model for Determining CO2 Emissions in Transient Driving Cycles

2019-09-09
2019-24-0054
Due to its high benefit-cost ratio, decreasing mechanical friction losses in internal combustion engines represents one of the most effective and widely applicable solutions for improved engine efficiency. Especially the piston group - consisting of piston, rings and pin - shows significant potential for friction reduction, which can be evaluated through extensive experimental parameter studies. For each investigated variant, the steady-state friction measurements are fitted to an empirical polynomial model. In order to calculate the associated fuel consumption and CO2 emissions in transient driving cycles, the steady-state friction model is used in a map-based vehicle simulation. If transient engine operation entails friction phenomena that are not included in the steady-state model, the simulation could yield erroneous fuel consumption and CO2 predictions.
Technical Paper

Analysis of Water Injection Strategies to Exploit the Thermodynamic Effects of Water in Gasoline Engines by Means of a 3D-CFD Virtual Test Bench

2019-09-09
2019-24-0102
CO2 emission constraints taking effect from 2020 lead to further investigations of technologies to lower knock sensitivity of gasoline engines, main limiting factor to increase engine efficiency and thus reduce fuel consumption. Moreover the RDE cycle demands for higher power operation, where fuel enrichment is needed for component protection. To achieve high efficiency, the engine should be run at stoichiometric conditions in order to have better emission control and reduce fuel consumption. Among others, water injection is a promising technology to improve engine combustion efficiency, by mainly reducing knock sensitivity and to keep high conversion rates of the TWC over the whole engine map. The comprehension of multiple thermodynamic effects of water injection through 3D-CFD simulations and their exploitation to enhance the engine combustion efficiency is the main purpose of the analysis.
Journal Article

Experimental Analysis of the Influence of Water Injection Strategies on DISI Engine Particle Emissions

2019-09-09
2019-24-0101
Increasing the efficiency of modern gasoline engines (with direct injection and spark-ignition - DISI) requires innovative approaches. The reduction of the engine displacement, accompanied by an increase of the mean pressure, is limited by the tendency of increasing combustion anomalies. Conventional methods for knock mitigation, on the contrary, have a negative effect on consumption and efficiency. A promising technology to solve these conflicting objectives is the injection of water. Both the indirect and the direct water injection achieve a significant reduction in the load temperature. The fuel enrichment can be reduced, whereby the operating range of the exhaust aftertreatment can be extended. In addition, water injection paves the way for an increase in the geometric compression ratio, which leads to an efficiency advantage even at partial load.
Technical Paper

Wall Heat Transfer in a Multi-Link Extended Expansion SI-Engine

2017-09-04
2017-24-0016
The real cycle simulation is an important tool to predict the engine efficiency. To evaluate Extended Expansion SI-engines with a multi-link cranktrain, the challenge is to consider all concept specific effects as best as possible by using appropriate submodels. Due to the multi-link cranktrain, the choice of a suitable heat transfer model is of great importance since the cranktrain kinematics is changed. Therefore, the usage of the mean piston speed to calculate a heat-transfer-related velocity for heat transfer equations is not sufficient. The heat transfer equation according to Bargende combines for its calculation the actual piston speed with a simplified k-ε model. In this paper it is assessed, whether the Bargende model is valid for Extended Expansion engines. Therefore a single-cylinder engine is equipped with fast-response surface-thermocouples in the cylinder head. The surface heat flux is calculated by solving the unsteady heat conduction equation.
Technical Paper

Optimization of a CNG Driven SI Engine Within a Parallel Hybrid Power Train by Using EGR and an Oversized Turbocharger with Active-WG Control

2010-04-12
2010-01-0820
The hybrid power train technology offers various prospects to optimize the engine efficiency in order to minimize the CO₂ emissions of an internal-combustion-engine-powered vehicle. Today different types of hybrid architectures like parallel, serial, power split or through-the-road concepts are commonly known. To achieve lowest fuel consumption the following hybrid electric vehicle drive modes can be used: Start/Stop, pure electric/thermal driving, recuperation of brake energy and the hybrid mode. The high complexity of the interaction between those power sources requires an extensive investigation to determine the optimal configuration of a natural-gas-powered SI engine within a parallel hybrid power train. Therefore, a turbocharged 1.0-liter 3-cylinder CNG engine was analyzed on the test bench. Using an optimized combustion strategy, the engine was operated at stoichiometric and lean air/fuel ratio applying both high- and low-pressure EGR.
X