Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Advanced Diesel Particulate Filtration Systems

2020-09-18
As diesel emissions regulations have become more and more stringent, diesel particulate filters (DPF) have become possibly the most important and complex diesel aftertreatment device. This seminar covers many DPF-related topics using fundamentals from various branches of applied sciences such as porous media, filtration and materials sciences and will provide the student with both a theoretical as well as an applications-oriented approach to enhance the design and reliability of aftertreatment platforms.
Training / Education

Corrosion Engineering and Prevention

2020-05-18
The transportation industry, including motor vehicles, aircraft, rail, marine, commercial, off-road and defense vehicles, as well as infrastructures, energy sectors, raw materials, manufacturing, health and food industries all experience significant issues with corrosion which results in billions of dollars of loss each year. Corrosion education and prevention is essential to improve and increase the service life of parts and components which may have a significant impact on the economy of various industries and nations.
Training / Education

Emissions-Related OBD Systems A Design Overview

2020-03-27
On-board diagnostics, required by governmental regulations, provide a means for reducing harmful pollutants into the environment. Since being mandated in 1996, the regulations have continued to evolve and require engineers to design systems that meet strict guidelines. This one day seminar is designed to provide an overview of the fundamental design objectives and the features needed to achieve those objectives for generic on-board diagnostics. The basic structure of an on-board diagnostic will be described along with the system definitions needed for successful implementation.
Technical Paper

Employing natural plant based fiber in interior automotive parts for cost & weight benefit

2019-11-21
2019-28-2559
The Automotive industry is in ever more need for a lesser weight car due to progressively stringent emission norms and the demand of customer to have better mileage. It can be a gargantuan challenge for automotive manufacturers to search for lesser weight material to meet both customers as well as regulatory norms. But in some cases such lower weight material can increase the cost and adding a expensive material which increases overall cost to a price sensitive market like India is not favorable. One such solution is using the indigenous plant fiber (Jute) in combination with propylene (PP) to make Interior plastics components. Jute a vegetable fiber also referred to as "the golden fiber" has high tensile strength, low extensibility and is well established in fabric, packing, agriculture, construction industries. The biodegradable Jute lesser weight & abundance (India is the leading manufacturer of the Jute) can be utilized in making automobile trim parts in India.
Technical Paper

Powertrain topologies for 2 wheelers : From ICE to Electrification

2019-11-21
2019-28-2480
As Battery cost is expected to see a Downward trend, Electrification of Powertrain in general is expected to pick up and 2wheeler Market is foreseen to be the Flag bearer in this race towards Electrification. In this paper, we would like to emphasize on the Journey of 2wheelers from Conventional Internal combustion Engine to Electrified Powertrains which we foresee in the future. Methodology: EV - Analysis of OEM strategies and upcoming trends in connectivity and electrification. Estimation of current market size of 2Wheeler and segmentation based on different personas. Building survey data based personas around ownership patterns for electric 2Wheelers. Mapping consumer decision process for electric 2Wheelers. Analyse the decision influencers and role of influencers in decision making process. Hybrid - Analysis of different hybrid topologies. Feasibility study via simulation and focus group assessments to evaluate the design. PoC will also be tried to validate the concept.
Technical Paper

Noise and vibration simulations method for electric hybrid tractor powertrain.

2019-11-21
2019-28-2469
Internal combustion (IC) engines have been serving as prime source of power in tractors, since late 19th Century. Over this period, there have been significant improvements in IC engine technology leading to increased power density, reduction in tailpipe emissions and refinement in powertrain noise of tractors. As the regulations governing tailpipe emissions continue to be more stringent, original equipment manufacturers also have initiated work on innovative approaches such as diesel-electric hybrid powertrains to ensure compliance with new norms. However, introduction of such technologies may impact customer’s auditory, vibratory and drivability perceptions. Absence of conventional IC engine noise, association of electric whistle and whine, torque changes with activation/de-activation of motors and transmission behavior under transient conditions may result in new NVH issues in hybrid electric vehicles.
Technical Paper

Automobile Exhaust Emmision Control- A review

2019-11-21
2019-28-2382
Since the 20th century increase in the number of cars in the major cities is been a point of concern because of the toxic gasses being emitted from the engine of an automobile. These gasses are polluting the atmosphere and degrading the air to breathe. The main gasses responsible for the degradation of air quality are carbon monoxide, hydrocarbon and oxides of nitrogen. There is a necessity to find ways to reduce the pollution emitted into the atmosphere from the automobile. The source of emission is either evaporation from fuel tank or carburetor which is easy to be dealt with or harmful gasses due to improper combustion which is a concern for the environment. The two ways to reduce these emissions are, modification in the engine to minimize the production of harmful gases and to treat the harmful gasses emitted from the engine before blowing it into the atmosphere from the exhaust. Catalysts help to break harmful gasses into smaller compounds that are environment-friendly.
Technical Paper

Determine Thermal Fatigue Requirements for PEPS Antenna Copper Wire over Vehicle Lifetime with defined Reliability Requirements.

2019-11-21
2019-28-2582
Reliability states the degree to which the result of a measurement, calculation, or specification can be depended on to be accurate. And, tests according to GMW specifications represents a minimum of 15 years of vehicle life time with defined Reliability and Confidence level. In this work, actual number of thermal cycles for Thermal Fatigue tests (Thermal Shock and Power Temperature Cycle) are calculated for Copper Wire whose Coffin Manson exponent is 5. Overstressing the PEPS Antenna under thermal fatigue requirement (defined number of thermal cycles based on Reliability and Confidence requirements) will lead to broken Copper wire which will result in component’s functional failure and thus impossible to continue reliability testing. The objective of this paper is to determine thermal fatigue requirements for Antenna’s Copper wire whose Coffin Manson exponent is 5.
Technical Paper

Experimental investigations on CO2 recovery from petrol engine exhaust using adsorption technology

2019-11-21
2019-28-2577
Energy policy reviews state that automobiles contribute 25% of the total Carbon-di-oxide (CO2) emission. The current trend in emission control techniques of automobile exhaust is to reduce CO2 emission. We know that CO2 is a greenhouse gas and it leads to global warming. Conversion of CO2 into carbon and oxygen is a difficult and energy consuming process when compared to the catalytic action of catalytic converters on CO, HC and NOX. The best way to reduce it is to capture it from the source, store it and use it for industry applications. To physically capture the CO2 from the engine exhaust, adsorbents like molecular sieves are utilized. When compared to other methods of CO2 separation, adsorption technique consumes less energy and the sieves can be regenerated, reused and recycled once it is completely saturated. In this research work, zeolite X13 was chosen as a molecular sieve to adsorb CO2 from the exhaust.
Technical Paper

Optimization of Compression Ratio for DI Diesel Engines for better fuel Economy

2019-11-21
2019-28-2431
Fuel economy is becoming one of the key parameter as it not only accounts for the profitability of commercial vehicle owner but also has impact on environment. Fuel economy gets affected from several parameters of engine such as Peak firing pressure, reduction in parasitic losses, improved volumetric efficiency, improved thermal efficiency etc. Compression ratio is one of key design criteria which affects most of the above mentioned parameters, which not only improve fuel efficiency but also results in improvement of emission levels. This paper evaluates the optimization of Compression ratio and study its effect on Engine performance. The parameters investigated in this paper include; combustion bowl volume in Piston and Cylinder head gasket thickness as these are major contributing factors affecting clearance volume and in turn the compression ratio of engine. Based on the calculation results, an optimum Compression Ratio for the engine is selected.
Technical Paper

Self-Sensing, Lightweight and High Modulus Carbon Nanotube Composites for Improved Efficiency and Safety of Electric Vehicles

2019-11-21
2019-28-2532
Carbon Composites (CFRP) have been touted to be an essential component of future automobiles due to their mechanical properties and lightweight. CFRP has been adopted successfully for secondary and primary structures in Aerospace industry. In Automobiles, they are incorporated in models like the BMW i-series. CFRP suffers from 2 major problems. Delamination of Composites leads to catastrophic and rapid failure which could be dangerous in passenger vehicles. Delamination occurs whenever there is a shock on the composite. Secondly, Composites need regular expensive maintenance to ensure that the material is intact and will not compromise passenger safety. Carbon Nanotubes in composites have shown a substantial increase in delamination resistance. A 0.1wt% addition of HiPCO® Single-walled Carbon Nanotube provides both self-sensing and improved fracture resistance.
Technical Paper

Mechanical Property Evaluation of Paper Honeycomb reinforced Plastics

2019-11-21
2019-28-2538
Mechanical Property Evaluation of Paper Honeycomb Reinforced Plastics Vignesh Balaji S G, Pradeep Hyundai Motor India Engineering Pvt. Ltd, Chennai. India Key Words: Paper Honeycomb, Epoxy Composites, Mechanical Properties, Tensile, Impact & Flexural Test Research and/or Engineering Questions/Objective : Composite Materials are widely being used in many engineering applications because of their desirable properties & Cost, Weight Effectiveness. They are widely being used as their Strength-Weight Ratio is Higher than any Other Material. Paper Honeycomb Material is basically a paper made of honeycomb shapes enforced between layers of Glass Mat. This paper deals with the evaluation of Tensile Strength, Flexural (Three-Point Bending) Strength & Flexural Modulus, Impact Strength of Paper Honeycomb Reinforced Epoxy Composites. The Scope of this Material defines the quality of Paper Honeycomb Reinforced Composites which can be used for Automotive Trim Parts.
Technical Paper

Development of Diesel Particulate NOx Reduction DPNR System for Simultaneous Reduction of PM and NOx in Diesel Engines

2019-11-21
2019-28-2554
The Diesel Particulate NOx Reduction (DPNR) system is used for simultaneous reduction of PM and NOx in diesel engine. DPF is used to trap particulate matter in diesel engines. NOx absorber technology removes NOx in a lean (i.e. oxygen rich) exhaust environment for both diesel and gasoline lean-burn GDI engines. The NOx storage and reduction catalyst is uniformly coated on the wall surface and in the fine pores of a highly porous filter substrate. Combination of these two components in the DPNR results in a compact size of the system. The base diesel engine model validated with pressure crank angle diagram and performance parameters such as Indicated mean effective pressure. This base engine’s exhaust emission is given as an input to the DPNR system. The surface reaction is connected to the DPF through chemcon template. The surface reaction is NOx storage and reduction chemical kinetics like Lean NOx Trap. The modelling of DPNR and Base engine is done using GT-SUITE.
Technical Paper

Combustion Optimization and In-cylinder NOx and PM Reduction by using EGR and Split Injection Technique

2019-11-21
2019-28-2560
Nowadays, the major most challenge in the diesel engine is the oxides of nitrogen (NOx) and particulate matter (PM) trade-off, with minimal reduction in Power and BSFC. Modern day engines also rely on expensive after-treatment devices, which may decrease the performance and increase the BSFC. In this paper, combustion optimization and in-cylinder emission control by introducing the Split injection technique along with EGR is carried out by 1-D (GT-POWER) simulation. Experiments were conducted on a 3.5 kW Single-cylinder naturally aspirated CRDI engine at the different load conditions. The Simulation model incorporates detailed pressure (Burn rate) analysis for different cases and various aspects of ignition delay, premixed and mixing controlled combustion rate, the injection rate affecting oxides of nitrogen and particulate matter.
Technical Paper

FABRICATION AND WEAR CHARACTERISTICS BASALT FIBER REINFORCED POLYPROPYLENE MATRIX COMPOSITES

2019-11-21
2019-28-2570
Generally brake pads are manufacturing by use of asbestos materials, these materials are chemically harmful and toxic, affects human health. The present investigation fabricates polypropylene composites with mixing constant volume [5 Vol.%] of alumina nano particles and different volume percentages [0%, 5%, 10% & 15%] of basalt fibre by hand layup compression technique. The wear characteristics of polypropylene matrix composites were tested by dry sliding condition using pin on disc apparatus configuration with hardened steel counter-face at elevated temperature. The load was applied 30N to 70N with the interval of 20N and varying of sliding speed 300 rpm to 900rpm with the interval of 300rpm for the time period of 0-180 sec. The wear rate was decreases with addition of alumina nano particle and also increases the frictional force for the effect of basalt fibre content present in the composites. The co-efficient of friction was increases from 0.1 to 0.66 under normal loading condition.
X