Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Introduction to Brake Noise, Vibration, and Harshness

2020-10-15
Brake Noise, Vibration, and Harshness (NVH) is recognized as one of the major problems currently faced by the automotive manufacturers and their suppliers, with customers warranty claims of more than $100 million per year for each manufacturer. With increasing consumer braking performance expectations, automotive OEM"s and suppliers need the ability to predict potential problems and identify solutions during the design phase before millions of dollars have been spent in design, prototyping, and manufacturing tooling.
Training / Education

Fundamentals of Steering Systems

2020-10-05
Design and development of a modern steering system influences vehicle response to steering wheel input, driver effort, comfort, safety and fuel economy. In this interactive seminar participants will analyze the steering system from the road wheel to the steering wheel. Day one will begin with a deep dive into the anatomy and architecture of the lower steering system (wheel end, suspension geometry, linkages and steering gear), its effect on vehicle response and how forces and moments at the contact patch are converted to a torque at the pinion.
Training / Education

Introduction to Brake Control Systems ABS, TCS, and ESC

2020-04-19
Once reserved for high-end luxury vehicles, electronic brake control systems are now required standard equipment on even the most inexpensive cars and trucks. Today, every new vehicle benefits from the optimized braking, enhanced acceleration, and improved stability that these systems provide. This comprehensive seminar introduces participants to the system-level design considerations, vehicle interface requirements, and inevitable performance compromises that must be addressed when implementing these technologies. The seminar begins by defining the tire-road interface and analyzing fundamental vehicle dynamics.
Training / Education

ADAS Application Automatic Emergency Braking

2020-04-18
Active Safety, Advanced Driver Assistance Systems (ADAS) are now being introduced to the marketplace as they serve as key enablers for anticipated autonomous driving systems. Automatic Emergency Braking (AEB) is one ADAS application which is either in the marketplace presently or under development as nearly all automakers have pledged to offer this technology by the year 2022. This one-day course is designed to provide an overview of the typical ADAS AEB system from multiple perspectives.
Training / Education

Applied Brake Controls ABS, TCS, and ESC

2020-01-27
Take notes.  Take a spin.  Repeat.  Six classroom modules (2 each for ABS, TCS and ESC!) are paired with six driving modules on a real-world ice and snow development test track in the Upper Peninsula of Michigan.  There's no better way to reinforce classroom learning than by grabbing the steering wheel.  All of the driving exercises have been specifically developed so that anyone can hop in the car and immediately link what you have just learned in the classroom. 
Training / Education

Fundamentals of Vehicle Suspension Design

2019-12-05
The design and development of vehicle suspensions significantly influences vehicle handling and ride comfort. Suspension system design excellence follows the basic laws of physics using design synthesis techniques, a methodical process for suspension geometry development. Suspension geometry is the foundation of vehicle performance from which high-confidence suspension components and tunings can be developed. Suspension component design continues to move toward mass and cost efficient designs with high levels of stiffness being essential to achieving design requirements.
Technical Paper

Transient Response Analysis and Synthesis of an FSAE Vehicle using Cornering Compliance

2019-11-21
2019-28-2400
OBJECTIVE Race vehicles are designed to achieve higher lateral acceleration arising at cornering conditions. A focused study on the steady state handling of the car is essential for the analysis of such conditions. The transient response analysis of the car is also equally important to achieve best driver-car relationship and to quantify handling in the range suitable for a racing car. This research aims to investigate the design parameters responsible for the transient characteristics and optimize those design parameters. This research work examines the time-based analysis of the problem to truly capture the non-linear dynamics. Apart from tires, chassis can be tuned to optimize vehicle handling and hence the response times. METHODOLOGY To start with, the system is modelled with governing parameters and simulation is carried out to set baseline configurations. Steady state and transient handling simulations run independent of each other with independent logic, coded on MATLAB.
Technical Paper

Semi-autonomous parking assist system (SA-PAS)

2019-11-21
2019-28-2529
This paper describes the Semi-autonomous parking assist system (SA-PAS) developed using combination of high accuracy position sensing and electronic power steering. A real-time system that helps driver to identify the parking space and assist to perform maneuvers. Parking is often a difficult task, especially for inexperienced drivers. Starting with the problem of having to find a suitable parking spot, to then maneuvering in to it without colliding with anything or anyone, while trying avoiding disturbing the surrounding traffic. The numbers of vehicles are rapidly increasing as compared to the expansions of roads and parking spaces. Therefore, effective use of the existing spaces is needed (by making them narrower), which can cause inconvenience to many drivers. Semi-autonomous parking assist system searches for suitable space and steers the vehicle into it, while driver has to control the gear shifter, accelerator and brakes.
Technical Paper

Compensation of Signal Offset, Amplitude Imbalance and Imperfect Quadrature in Rotor Position Sensor Signals for Motor Drives

2019-11-21
2019-28-2524
In recent years, the use of the electric motors in automotive applications such as electric power steering (EPS), hybrid and electric vehicles has increased. In these fields, rotor position information plays and important role in the field- oriented control concept. It performs a transformation from the stator reference frame to the rotor reference frame and vice versa. This is nothing but the Park and inverse Park transformation. They are typically used to provide accurate absolute rotor position in high-performance motor drive systems because their robustness and reliability make them particularly suited to Automotive Environment. Hence, greater accuracy of these sensor signals is required. However, in reality, the output signals include the position error in the sensor itself as well as error in the sensor signal conditioning circuits.
X