Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Introduction to Brake Control Systems ABS, TCS, and ESC

2020-04-19
Once reserved for high-end luxury vehicles, electronic brake control systems are now required standard equipment on even the most inexpensive cars and trucks. Today, every new vehicle benefits from the optimized braking, enhanced acceleration, and improved stability that these systems provide. This comprehensive seminar introduces participants to the system-level design considerations, vehicle interface requirements, and inevitable performance compromises that must be addressed when implementing these technologies. The seminar begins by defining the tire-road interface and analyzing fundamental vehicle dynamics.
Training / Education

ADAS Application Automatic Emergency Braking

2020-04-18
Active Safety, Advanced Driver Assistance Systems (ADAS) are now being introduced to the marketplace as they serve as key enablers for anticipated autonomous driving systems. Automatic Emergency Braking (AEB) is one ADAS application which is either in the marketplace presently or under development as nearly all automakers have pledged to offer this technology by the year 2022. This one-day course is designed to provide an overview of the typical ADAS AEB system from multiple perspectives.
Training / Education

Applied Brake Controls ABS, TCS, and ESC

2020-01-27
Experience the vehicle dynamic enhancements afforded by anti-lock brakes (ABS), traction control (TCS), and electronic stability control (ESC) with this highly interactive two-day seminar. Designed to get you out of the classroom and on to the test track, a total of six 60-minute structured learning experiences behind the wheel will vividly illustrate the benefits, limitations, and ultimate compromises that must be made when designing and implementing modern brake control systems.
Training / Education

Fundamentals of Vehicle Suspension Design

2019-12-05
The design and development of vehicle suspensions significantly influences vehicle handling and ride comfort. Suspension system design excellence follows the basic laws of physics using design synthesis techniques, a methodical process for suspension geometry development. Suspension geometry is the foundation of vehicle performance from which high-confidence suspension components and tunings can be developed. Suspension component design continues to move toward mass and cost efficient designs with high levels of stiffness being essential to achieving design requirements.
Technical Paper

A new appraisal of the thermomechanical behaviour of a hybrid composite brake disc in a formula vehicle

2019-11-21
2019-28-2572
A new appraisal of the thermomechanical behaviour of a hybrid composite brake disc in a formula vehicle Research Objective This paper presents a hybrid composite brake disc with reduced Un Sprung Weight clearing thermal and structural analysis in a formula vehicle.Main purpose of this study is to analyse thermomechanical behaviour of composite brake disc for a formula vehicle under severe braking conditions. Methodology In the disk brake system, the disc is a major part of a device used for slowing or stopping the rotation of a wheel. Repetitive braking of the vehicle leads to heat generation during each braking condition. Based on the practical understanding the brake disc was remodelled with unique slotting patterns and grooves, using the selected aluminium alloy of (AA8081) with reinforcement particle of Silicon carbide (SiC) and Graphite (Gr) as a hybrid composite material for this proposed work.
Technical Paper

Design & analysis of 2 point aluminum upper control arm in modular multi link rear suspension system

2019-11-21
2019-28-2564
In current automobile market, due to the need of meeting future CO2 limits and emission standards, demand for hybrid systems is on the rise. In general, the requirements of modern automobile architecture demands modular chassis structure to develop vehicle variants using minimum platforms. The multi-link modular suspension system provides ideal solution to achieve these targets. To match ideal stiffness characteristics of system with minimum weight, aluminum links are proving a good alternative to conventional steel forged or stamped linkages. Design of current 2-point link (Upper Control Arm) is based on elasto-kinematic model developed using standard load cases from multi body dynamics. CAD system used is CATIA V5 to design upper control arm for rear suspension. This arm connects steering knuckle & rear sub frame. For Finite Element Analysis we used Hyperworks CAE tool to analyze design under all load cased & further optimization is done to resolve highly stressed zones.
Technical Paper

Design and Development of Industrial Automotive Battery Management system

2019-11-21
2019-28-2498
Battery operated vehicle need accurate management system because of its quick changes in State of charge (SOC) due to aggressive acceleration profiles and regenerative braking. Li-ion battery needs control over its operating area for its safe working. So, the main objective of the proposed system is to develop a BMS having algorithms to estimate accurate SOC, predict degradation parameters, balance individual cells, manage cell temperature, and provide safe area of operation defined by voltage and temperature. Proposed methodology uses Model-based Design approach wherein nonlinear behavior of battery is modeled as Equivalent Circuit Model to compute the SOC and degradation effect on battery to decide the end of life of battery, also performing inductive Active balancing on cells to equalize the charge. proposed algorithms communicate with the vehicle ECU through CAN to assist the driver for runtime estimation, time for battery swapping, Alerts.
Technical Paper

Transient Response Analysis and Synthesis of an FSAE Vehicle using Cornering Compliance

2019-11-21
2019-28-2400
OBJECTIVE Race vehicles are designed to achieve higher lateral acceleration arising at cornering conditions. A focused study on the steady state handling of the car is essential for the analysis of such conditions. The transient response analysis of the car is also equally important to achieve best driver-car relationship and to quantify handling in the range suitable for a racing car. This research aims to investigate the design parameters responsible for the transient characteristics and optimize those design parameters. This research work examines the time-based analysis of the problem to truly capture the non-linear dynamics. Apart from tires, chassis can be tuned to optimize vehicle handling and hence the response times. METHODOLOGY To start with, the system is modelled with governing parameters and simulation is carried out to set baseline configurations. Steady state and transient handling simulations run independent of each other with independent logic, coded on MATLAB.
Technical Paper

Characterization and Durability of Mold-In-Color Engineering Plastics

2019-11-21
2019-28-2542
Plastics are prone to photo oxidative and thermal oxidative degradation under usage conditions due to their chemical nature. From sustainability and cost standpoint, there is an increasing focus on Mold-In-Color (MIC) plastic materials. Simultaneously customer’s expectations on the perceived quality of these MIC parts has been increasing with attractive color and glossy appearance. A study was conducted to analyze the product quality and durability aspects over a prolonged exposure to accelerated weathering condition. Material selected for this study were injection molded specimens of ABS and PC/ABS used in automotive passenger vehicles.
Technical Paper

Semi-autonomous parking assist system (SA-PAS)

2019-11-21
2019-28-2529
This paper describes the Semi-autonomous parking assist system (SA-PAS) developed using combination of high accuracy position sensing and electronic power steering. A real-time system that helps driver to identify the parking space and assist to perform maneuvers. Parking is often a difficult task, especially for inexperienced drivers. Starting with the problem of having to find a suitable parking spot, to then maneuvering in to it without colliding with anything or anyone, while trying avoiding disturbing the surrounding traffic. The numbers of vehicles are rapidly increasing as compared to the expansions of roads and parking spaces. Therefore, effective use of the existing spaces is needed (by making them narrower), which can cause inconvenience to many drivers. Semi-autonomous parking assist system searches for suitable space and steers the vehicle into it, while driver has to control the gear shifter, accelerator and brakes.
Technical Paper

Compensation of Signal Offset, Amplitude Imbalance and Imperfect Quadrature in Rotor Position Sensor Signals for Motor Drives

2019-11-21
2019-28-2524
In recent years, the use of the electric motors in automotive applications such as electric power steering (EPS), hybrid and electric vehicles has increased. In these fields, rotor position information plays and important role in the field- oriented control concept. It performs a transformation from the stator reference frame to the rotor reference frame and vice versa. This is nothing but the Park and inverse Park transformation. They are typically used to provide accurate absolute rotor position in high-performance motor drive systems because their robustness and reliability make them particularly suited to Automotive Environment. Hence, greater accuracy of these sensor signals is required. However, in reality, the output signals include the position error in the sensor itself as well as error in the sensor signal conditioning circuits.
Technical Paper

Development of Systematic Technique for Design of Electric Motor Mounting System in EV/ HEV Application

2019-11-21
2019-28-2508
Last decade has been era of environmental awareness. Various programs have launched for making devices and appliances eco-friendly. This initiative has lead automobile industry toward hybridization and now total electrification of vehicles. Electric motor produce high frequency vibration along with high torque. Hence it needs to be isolated properly & carefully as these vibrations can damage other automobile parts. Dynamic response of electric motor is different from response of IC engines, so use of engine mounting design method is not suitable for designing mounting system for electric motor mounting system. In design of electric motor mounting, position and orientation of elastomeric mounts plays important role. Mounts used in passive vibration isolation are made up of elastomeric material which are stiff and resilient in nature.
Technical Paper

An Energy Harvesting E-SHOCK for Future Mobility

2019-11-21
2019-28-2506
India has emerged as the world’s biggest market for Two-wheelers and Four-wheeler. Besides rising incomes and growing infrastructure in all areas, one big reason for the spurt in sales has been ease of zipping in and out of chaotic city traffic along with road irregularities and potholes. Furthermore, the efficiency increase in the Shock absorber within the vehicle have high demands to use of regenerative solutions, in which e-system can be employed as to recover part of the energy otherwise dissipated in form of heat. The Smart e-Shock can charge battery and illuminate accessories of vehicle. Also, the e-shock can provide the various damping characteristics by changing the Electric load on to it to make system as Semi-Active Suspension. This Smart e-Shock system is based on unique and patented concept of constraining the reciprocating motion of the shock absorber in to a single sense of rotation of e-system and the energy is recuperated and given to the battery from the e-system.
Technical Paper

Impact of Vehicle Electrification on Brake Design

2019-11-21
2019-28-2499
Electric vehicles have come full circle from being primary vehicle type in 19th century (much before IC powered vehicles) to 21st century where major stake holders in mobility have announced plans towards vehicle electrification. Apart from battery & powertrain system, braking system is area which will undergo major changes because of vehicle electrification. But Why? Major keywords are regenerative braking, increased vehicle weight, no or insufficient vacuum from engine and silent powertrains. This paper tries to outline potential impact on hydraulic brake system & its component design for M1 and N1 category of four wheelers with advent of vehicle electrification. Needless to say extent of change will vary depending upon extent of electrification and extent of recuperation during regenerative braking. Extent of electrification depends upon whether vehicle is range extender type hybrid vehicle, plug in hybrid vehicle, battery electric vehicle, fuel cell vehicle etc.
Technical Paper

Photo oxidation analysis method for automotive coating weathering performance evaluation

2019-11-21
2019-28-2555
RESEARCH OBJECTIVE Accelerated artificial weathering performance has been always observed as critical and most important factor for durability prediction of colour and resin for a coating system. Photo oxidation of resin is the phenomenon behind coating’s ageing. Though accelerated weathering tests protocols are widely used in industry, they are very costly and still very time consuming. One automotive grade accelerated testing can go as long as 8 months duration. METHODOLOGY (maximum 150 words) Photo oxidation value (POV) is proportionate to the degradation of the resin material used in coating. During the accelerated weathering POV is measured for the coating at stipulated interval during initial phase and trend is plotted for deterioration verses weathering test duration. POV can be analysed with the help of FTIR analysis to observe bond absorption energy and bond separation energy in the resin system. This trend can be extrapolated to predict the weathering performance of coating.
Technical Paper

Employing natural plant based fiber in interior automotive parts for cost & weight benefit

2019-11-21
2019-28-2559
The Automotive industry is in ever more need for a lesser weight car due to progressively stringent emission norms and the demand of customer to have better mileage. It can be a gargantuan challenge for automotive manufacturers to search for lesser weight material to meet both customers as well as regulatory norms. But in some cases such lower weight material can increase the cost and adding a expensive material which increases overall cost to a price sensitive market like India is not favorable. One such solution is using the indigenous plant fiber (Jute) in combination with propylene (PP) to make Interior plastics components. Jute a vegetable fiber also referred to as "the golden fiber" has high tensile strength, low extensibility and is well established in fabric, packing, agriculture, construction industries. The biodegradable Jute lesser weight & abundance (India is the leading manufacturer of the Jute) can be utilized in making automobile trim parts in India.
X