Refine Your Search




Search Results

Training / Education

Introduction to Brake Noise, Vibration, and Harshness

Brake Noise, Vibration, and Harshness (NVH) is recognized as one of the major problems currently faced by the automotive manufacturers and their suppliers, with customers warranty claims of more than $100 million per year for each manufacturer. With increasing consumer braking performance expectations, automotive OEM"s and suppliers need the ability to predict potential problems and identify solutions during the design phase before millions of dollars have been spent in design, prototyping, and manufacturing tooling.
Training / Education

Fundamentals of Steering Systems

Design and development of a modern steering system influences vehicle response to steering wheel input, driver effort, comfort, safety and fuel economy. In this interactive seminar participants will analyze the steering system from the road wheel to the steering wheel. Day one will begin with a deep dive into the anatomy and architecture of the lower steering system (wheel end, suspension geometry, linkages and steering gear), its effect on vehicle response and how forces and moments at the contact patch are converted to a torque at the pinion.
Training / Education

Advanced Diesel Particulate Filtration Systems

As diesel emissions regulations have become more and more stringent, diesel particulate filters (DPF) have become possibly the most important and complex diesel aftertreatment device. This seminar covers many DPF-related topics using fundamentals from various branches of applied sciences such as porous media, filtration and materials sciences and will provide the student with both a theoretical as well as an applications-oriented approach to enhance the design and reliability of aftertreatment platforms.
Training / Education

Evaporative and Refueling Emission Control

All gasoline powered vehicles and equipment create exhaust and evaporative and refueling emissions. Unlike exhaust emissions, which occur only when the engine is operating, evaporative emissions (evap emissions) occur all the time. Controlling evap emissions to PZEV levels is as challenging as controlling exhaust emissions. It becomes even more important in the case of plug-in hybrid electric vehicles (PHEV) and extended range electric vehicles (EREV) which generate evaporative fuel vapors, but have no place to burn/consume the vapors when the engine does not operate for extended periods of time.
Training / Education

Fundamental Concepts of Turbocharging Modern Engines Current Practices and Trends

Turbocharging is rapidly becoming an integral part of many internal combustion engine systems. While it has long been a key to diesel engine performance, it is increasingly seen as an enabler in meeting many of the efficiency and performance requirements of modern automotive gasoline engines. This web seminar will discuss the basic concepts of turbocharging and air flow management of four-stroke engines. The course will explore the fundamentals of turbocharging, system design features, performance measures, and matching and selection criteria.
Training / Education

Fundamentals of Automotive All-Wheel Drive Systems

This seminar provides an introduction to the fundamental concepts and evolution of passenger car and light truck 4x4/all-wheel drive (AWD) systems including the nomenclature utilized to describe these systems. Basic power transfer unit and transfer case design parameters, component application to system function, the future of AWD systems, and emerging technologies that may enable future systems are covered. This course is an excellent follow-up to the 98024-A Familiarization of Drivetrain Components seminar (which is designed for those who have limited experience with the total drivetrain).
Training / Education

Introduction to Brake Control Systems ABS, TCS, and ESC

Once reserved for high-end luxury vehicles, electronic brake control systems are now required standard equipment on even the most inexpensive cars and trucks. Today, every new vehicle benefits from the optimized braking, enhanced acceleration, and improved stability that these systems provide. This comprehensive seminar introduces participants to the system-level design considerations, vehicle interface requirements, and inevitable performance compromises that must be addressed when implementing these technologies. The seminar begins by defining the tire-road interface and analyzing fundamental vehicle dynamics.
Training / Education

ADAS Application Automatic Emergency Braking

Active Safety, Advanced Driver Assistance Systems (ADAS) are now being introduced to the marketplace as they serve as key enablers for anticipated autonomous driving systems. Automatic Emergency Braking (AEB) is one ADAS application which is either in the marketplace presently or under development as nearly all automakers have pledged to offer this technology by the year 2022. This one-day course is designed to provide an overview of the typical ADAS AEB system from multiple perspectives.
Training / Education

Emissions-Related OBD Systems A Design Overview

On-board diagnostics, required by governmental regulations, provide a means for reducing harmful pollutants into the environment. Since being mandated in 1996, the regulations have continued to evolve and require engineers to design systems that meet strict guidelines. This one day seminar is designed to provide an overview of the fundamental design objectives and the features needed to achieve those objectives for generic on-board diagnostics. The basic structure of an on-board diagnostic will be described along with the system definitions needed for successful implementation.
Training / Education

Applied Brake Controls ABS, TCS, and ESC

Experience the vehicle dynamic enhancements afforded by anti-lock brakes (ABS), traction control (TCS), and electronic stability control (ESC) with this highly interactive two-day seminar. Designed to get you out of the classroom and on to the test track, a total of six 60-minute structured learning experiences behind the wheel will vividly illustrate the benefits, limitations, and ultimate compromises that must be made when designing and implementing modern brake control systems.