Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Metrics based design of electromechanical coupled reduced order model of an electric powertrain for NVH assessment

2024-06-12
2024-01-2913
Electric vehicles offer cleaner transportation with lower emissions, thus their increased popularity. Although, electric powertrains contribute to quieter vehicles, the shift from internal combustion engines to electric powertrains presents new Noise, Vibration, and Harshness challenges. Unlike traditional engines, electric powertrains produce distinctive tonal noise, notably from motor whistles and gear whine. These tonal components have frequency content, sometimes above 10 kHz. Furthermore, the housing of the powertrain is the interface between the excitation from the driveline via the bearings and the radiated noise (NVH). Acoustic features of the radiated noise can be predicted by utilising the transmitted forces from the bearings. Due to tonal components at higher frequencies and dense modal content, full flexible multibody dynamics simulations are computationally expensive.
Technical Paper

Numerical Study of Application of Gas Foil Bearings in High-Speed Drivelines

2024-06-12
2024-01-2941
Gas bearings are an effective solution to high-speed rotor applications for its contamination free, reduced maintenance and higher reliability. However, low viscosity of gas leads to lower dynamic stiffness and damping characteristics resulting in low load carrying capacity and instability at higher speeds. Gas bearings can be enhanced by adding a foil structure commonly known as gas foil bearings (GFBs), whose dynamic stiffness can be tailored by modifying the geometry and the material properties resulting in better stability and higher load carrying capacity. A detailed study is required to assess the performance of high-speed rotor systems supported on GFBs, therefore in this study a bump type GFB is analyzed for its static and dynamic characteristics. The static characteristics are obtained by solving the non-linear Reynolds equation through an iterative procedure.
Technical Paper

A Methodology for Accelerated Thermo-Mechanical Fatigue Life Evaluation of Advanced Composites

2024-06-01
2024-26-0421
Thermo-mechanical fatigue and natural aging due to environmental conditions are difficult to simulate in an actual test with the advanced fiber-reinforced composites, where their fatigue and aging behavior is little understood. Predictive modeling of these processes is challenging. Thermal cyclic tests take a prohibitively long time, although the strain rate effect can be scaled well for accelerating the mechanical stress cycles. Glass fabric composites have important applications in aircraft and spacecraft structures including microwave transparent structures, impact-resistant parts of wing, fuselage deck and many other load bearing structures. Often additional additively manufactured features and coating on glass fabric composites are employed for thermal and anti-corrosion insulations. In this paper we employ a thermo-mechanical fatigue model based accelerated fatigue test and life prediction under hot to cold cycles.
Technical Paper

Assessing the Structural Feasibility and Recyclability of Flax/PLA Bio-Composites for Enhanced Sustainability

2024-06-01
2024-26-0407
Bio-composites have gained significant attention within the aerospace industry due to their potential as a sustainable solution that addresses the demand for lightweight materials with reduced environmental impact. These materials blend natural fibers sourced from renewable origins, such as plant-based fibers, with polymer matrices to fabricate composite materials that exhibit desirable mechanical properties and environmental friendliness. The aerospace sector's growing interest in bio-composites originates from those composites’ capacity to mitigate the industry's carbon footprint and decrease dependence on finite resources. This study aims to investigate the suitability of utilizing plant derived flax fabric/PLA (polylactic acid) matrix-based bio-composites in aerospace applications, as well as the recyclability potential of these composites in the circular manufacturing economy.
Technical Paper

Fault Detection in Machine Bearings using Deep Learning - LSTM

2024-06-01
2024-26-0473
In today's industrial sphere, machines are the key supporting various sectors and their operations. Over time, due to extensive usage, these machines undergo wear and tear, introducing subtle yet consequential faults that may go unnoticed. Given the pervasive dependence on machinery, the early and precise detection of these faults becomes a critical necessity. Detecting faults at an early stage not only prevents expensive downtimes but also significantly improves operational efficiency and safety standards. This research focuses on addressing this crucial need by proposing an effective system for condition monitoring and fault detection, leveraging the capabilities of advanced deep learning techniques. The study delves into the application of five diverse deep learning models—LSTM, Deep LSTM, Bi LSTM, GRU, and 1DCNN—in the context of fault detection in bearings using accelerometer data. Accelerometer data is instrumental in capturing vital vibrations within the machinery.
Technical Paper

Development of Deployment Mechanism for RAMBHA-LP Payload Onboard Chandrayaan-3 Lander

2024-06-01
2024-26-0455
RAMBHA-LP (Radio Anatomy of Moon Bound Hypersensitive Ionosphere and Atmosphere - Langmuir Probe) is one of the key scientific payloads onboard the Indian Space Research Organization’s (ISRO) Chandrayaan-3 mission. Its objectives were to estimate the plasma density and its variations on the near lunar surface. The probe was initially kept in a stowed condition attached to the lander. A mechanism was designed and realized to meet the functional requirement of deploying the probe at a distance of 1 meter, equivalent to the Debye length of the probe in the moon’s plasma environment. The probe deployment mechanism consists of the Titanium alloy spherical probe with a Titanium Nitride coating on its surface to achieve a constant work function, a long carbon-fiber-reinforced polymer boom, a double torsion spring, a dust-protection box, and a shape-memory alloy-based Frangibolt actuator for low-shock separation. The entire mechanism weighed less than 1.5 kilograms.
Standard

Plain Bearing Test Methods

2024-04-18
WIP
ARP5448C
This SAE Aerospace Recommended Practice (ARP) establishes methods for testing airframe plain bearings. The purpose of ARP5448 and its associated slash sheets is to document test methods commonly used to evaluate airframe bearings. These test methods may be referenced in specifications, part standards, purchase orders, etc., when the test is deemed appropriate to the intended use of the bearing by the end user of the bearing. These test methods are not intended to encompass every conceivable requirement for an airframe bearing. The end user of the bearing must exercise engineering judgment to determine the most appropriate standard and/or nonstandard tests for the application.
Technical Paper

New Solution for Material Damage Characterization of CFRP Laminate with Filament Winding Structure Using a Hexagonal-Shaped Mandrel

2024-04-09
2024-01-2884
We are in the context of the analysis of carbon fiber reinforced plastics (CFRP) high-pressure vessel (COPV - Composite Overwrapped Pressure Vessel) manufactured by filament winding (FW). Classically, the parameters of material models are identified based on flat laminate coupons with specific predetermined fiber orientations, and based on standards like the ones of ASTM relevant for flat coupons. CFRP manufactured by FW has a unique and complex laminate structure, which presents curvatures and ply interlacements. In practice, it is important to use coupons produced with the final manufacturing process for the parameter identification of the material models; if classical coupons produced by e.g. ply lamination are used, the effect of FW structure cannot be accounted for, and cannot be introduced in the material models. It is therefore essential to develop an approach to create representative flat coupons based on the FW process.
Technical Paper

Identification of Low Vibration Damping Areas on Automotive Door Panel and Improvement Using Natural Fibers

2024-04-09
2024-01-2338
Vibrations constitute a pivotal factor affecting passenger comfort and overall vehicle performance in both Conventional Internal Combustion Engine (ICE) vehicles and Electric Vehicles (EVs). These vibrations emanate from various sources, including vehicle design and construction, road conditions, and driving patterns, thereby leading to passenger discomfort and fatigue. In the pursuit of mitigating these issues, natural fibers, known for their exceptional damping properties, have emerged as innovative materials for integration into the automotive industry. Notably, these natural fiber-based materials offer a cost-effective alternative to traditional materials for vibration reduction. This research focuses on evaluating natural fibers mainly hemp, jute and cotton fibers for their damping characteristics when applied to a steel plate commonly used in the automotive sector.
Technical Paper

Modeling and Validation of the Tire Friction on Wet Road

2024-04-09
2024-01-2307
In order to study the tire friction characteristics under wet skid surface, the “pseudo” hydrodynamic pressure bearing effect is used to be equivalent to the hydrodynamics of water film, and an advanced Lugre tire hydroplaning dynamic model is developed by combining the arbitrary pressure distribution function. The water hydroplaning dynamic tests were carried out for 285/70R19.5 tire under wet of different water film thickness and dry conditions, and the parameters of the advanced Lugre tire dynamic model were identified. The results show that the tire water-skiing model proposed in this paper can effectively simulate the friction characteristics of tires under different water film thicknesses. Under dry conditions, 0.5mm water film and 1mm water film road conditions, the relative errors of the maximum tire friction coefficient between the tested and advanced Lugre tire model are 1.11%, 0.12% and 0.16%, respectively.
Technical Paper

Parameter Identification of Constitute Model of Glass Fiber Reinforced Polypropylene under Adiabatic Temperature Rise Loads

2024-04-09
2024-01-2355
To characterize the stress flow behavior of engineering plastic glass fiber reinforced polypropylene (PPGF) commonly used in automotive interior and exterior components, mechanical property is measured using a universal material testing machine and a servo-hydraulic tensile testing machine under quasi-static, high temperature, and high strain rate conditions. Stress versus strain curves of materials under different conditions are obtained. Based on the measured results, a new parameter identification method of the Johnson-Cook (J-C) constitutive model is proposed by considering the adiabatic temperature rise effect. Firstly, a material-level experiment method is carried out for glass fiber reinforced polypropylene (PPGF) materials, and the influence of wide strain rate range, and large temperature span on the material properties is studied from a macroscopic perspective.
Technical Paper

A Holistic Approach to Mitigating Warpage in Fiber-Reinforced Plastic Injection Molding for Automotive Applications

2024-04-09
2024-01-2358
Fiber-reinforced plastics (FRPs), produced through injection molding, are increasingly preferred over steel in automotive applications due to their lightweight, moldability, and excellent physical properties. However, the expanding use of FRPs presents a critical challenge: deformation stability. The occurrence of warping significantly compromises the initial product quality due to challenges in part mounting and interference with surrounding parts. Consequently, mitigating warpage in FRP-based injection parts is paramount for achieving high-quality parts. In this study, we present a holistic approach to address warpage in injection-molded parts using FRP. We employed a systematic Design of Experiments (DOE) methodology to optimize materials, processes, and equipment, with a focus on reducing warpage, particularly for the exterior part. First, we optimized material using a mixture design in DOE, emphasizing reinforcements favorable for warpage mitigation.
Technical Paper

Enhancement of Physical and Mechanical Attributes of a Natural Fiber-Reinforced Composite for Engineering Applications

2024-04-09
2024-01-2237
A natural fiber based polymer composite has the advantage of being more environment-friendly from a life cycle standpoint when compared to composites reinforced with widely-used synthetic fibers. The former category of composites also poses reduced health risks during handling, formulation and usage. In the current study, jute polymer laminates are studied, with the polymeric resin being a general purpose polyester applied layer-by-layer on bi-directionally woven jute plies. Fabrication of flat laminates following the hand layup method combined with compression molding yields a jute polymer composite of higher initial stiffness and tensile strength, compared to commonly used plastics, coupled with consistency for engineering design applications. However, the weight-saving potential of a lightweight material such as the current jute-polyester composite can be further enhanced through improvement of its behavior under mechanical loading.
Technical Paper

Analysis of Loads Applied to Wheels of Heavy Vehicles and Study on Loosening of Hub Bolts and Nuts

2024-04-09
2024-01-2251
Heavy vehicles such as construction machinery generally require a large traction force. For this reason, axle components are equipped with a final reduction gear to provide a structure that can generate a large traction force. Basic analysis of vertical load, horizontal load (traction force), centrifugal force, and torsional torque applied to the wheels of heavy vehicles such as construction machinery and industrial vehicles, as well as actual working load analysis during actual operations, were conducted and compiled into a load analysis diagram. The loosening tendency of wheel bolts and nuts that fasten the wheel under actual working load was measured, and the loosening analysis method was presented. The causes of wheel fall-off accidents in heavy trucks, which have recently become a problem, were examined. Wheel bolts are generally tightened by the calibrated wrench method using a torque wrench.
Technical Paper

Combination of Dissimilar Overlay Materials for Engine Bearing Life Extension

2024-04-09
2024-01-2066
Nowadays, Bismuth (Bi) is being applied as an overlay material for engine bearings instead of Lead (Pb) which is an environmentally harmful material. Bi overlay has already been a solid performer in some automotive engine sectors due to its superior load carrying capacity and good robustness characteristic which are necessary to maintain its longevity during the lifetime of engines. The replacement is also seen on relatively larger size engines, such as Trucks and Off-highway heavy duty applications. Basically, these applications require higher power output than passenger cars, and the expected component lifecycle becomes longer. Though Bi has similar material characteristic to traditional Pb, it becomes challenging for the material alone to satisfy these requirements. Polymer overlay is known for its superior anti-wear performance and longer lifetime due to less adhesion against a steel counterpart than metallic materials (included Bi).
Technical Paper

Frequency Response Method for Setting Bearing Preload: Analytical Model for Multi-Row Tapered Roller Bearings

2024-04-09
2024-01-2151
Recently, there has been a new method for setting bearing preload on tapered roller bearings in a power transmission system. To move this new method into production, an analytical model that relates the bearing preload to the stiffness of the bearing was developed. This work develops an analytical model that links the preload on multi-row tapered roller bearings to the stiffness of the power transmission system. This study also validates the proposed analytical model by comparing it to both previous work and commercially available simulation software. The analytical model has shown that it is highly sensitive to the number of rollers in the bearing, which is discussed in this work.
X