Refine Your Search




Search Results

Training / Education

Surface Texture Specification and Control

Surface texture is one of the most important topics in today"s world of design, development and performance. As tolerances are shrinking and performance demands are increasing, surface texture is rapidly becoming one of the most important aspects of engine and vehicle performance. Every moving component on a vehicle or engine is influenced by surface texture in one or more of the following ways: vibration, sealing, adhesion, traction, emissions, safety, durability, wear/failure analysis. Many of the industry"s top warranty issues (leaks, noise, vibration, etc.) are a direct result of surface texture implications.
Training / Education

Introduction to Rubber Science and Technology

Rubber – a loosely cross-linked network of polymer chains that when strained to high levels will forcibly return to at or near it original dimensions. This course is designed to provide the participant with a thorough understanding of rubber’s engineering characteristics. This class will introduce the various sources of rubber, both natural and synthetic. The class will contrast the differences between rubber and plastics; including thermoplastic rubber. Detailed discussions on how to select the correct rubber polymer for the application, highlighting the pros and cons of each major rubber type.
Training / Education

Basics of Silicone Rubber Science and Technology

Silicone rubber is comprised of inorganic-organic polymers. These materials consist of an inorganic backbone with organic side groups attached to silicon atoms. This family of polymers possesses unmatched versatility giving the formulator and user multiple forms and methods to cross link the polymers into rubber materials having the widest service temperature range of any rubber material. This course is designed to provide the participant with a thorough understanding of silicone’s engineering characteristics.
Training / Education

Materials Degradation in Mechanical Design Wear, Corrosion, Fatigue and their Interactions

Materials degradation from environmental conditions is a common factor that will often occur in mechanical equipment used in every type of environment. These processes can frequently materialize in unpredicted and harmful ways, especially when they interact and lead to early component damage or failure. This five-session course will summarize the mechanisms that cause materials and mechanical components to degrade in service through exposure to deleterious mechanical and environmental conditions.
Technical Paper


Orbital drilling has proved to be advantageous to achieve aeronautical-level quality drilling (surface roughness, geometry control…) fully adapted for complex assemblies in a single operation. However, compared to conventional drilling method, this process leads to a drastic change in structure's fatigue life probably due to a non-optimised level of residual stress. The control of the mechanical behaviour of parts obtained by orbital drilling is the goal of the European-CleanSky collaborative R&D project RODEO (Robotized Orbital Drilling Equipment and Optimized Residual Stresses, GA no.738219). In this work, an orbital drilling unit (ORBIBOT) allowing high-speed-machining conditions was developed by PRECISE France, that can be integrated on a lightweight industrial robot. Cutting parameters were determined through an original Tool-Material Couple optimization strategy dedicated to orbital drilling, developed with MITIS Engineering and carried out on aluminium alloy 2024-T351.
Technical Paper

A Comprehensive Study on BSVI Turbocharger Selection and its Deterioration with Closed Crank-Case Ventilation in Heavy Commercial Vehicles

BSVI Norms getting implemented in India by April 2020 and every heavy commercial vehicle OEMs viewing it as one of the greatest challenge, there are many factors and trade off that should be considered at every step of the project. The newly developed engine in BSVI will be equipped with actuators like Intake Throttle Valve, Exhaust Throttle Valve and combination of these flap operations with turbocharger output plays a prominent role in controlling performance and emission. Turbocharger selection plays major role in engine and vehicle performance on road and testcell. Turbo charger plays an apex role in providing both required boost to the engine performance and set up a control on emissions. This study focusses on the use of different AVU (Air Valve Unit) controlled waste gate turbochargers from different suppliers and how it’s getting matched with the engine performance requirements.
Technical Paper

Experimental Evaluation of Novel Thermal Barrier Coatings in a Single Cylinder Light Duty Diesel Engine.

Objective The objective of this investigation is to improve the thermal properties of plasma sprayed thermal barrier coatings (TBC) for combustion engines. There is a need for further reduction of thermal conductivity and volumetric heat capacity. The negative effects of surface roughness and open surface porosity, typical for plasma sprayed coatings, should be minimized. Methodology To improve the thermal properties, four different measures were applied: 1. modification of the coating's microstructure by using suspension plasma spraying 2. application of gadolinia, a ceramic oxide material originated from aerospace industry 3. polishing of the coating to achieve low surface roughness 4. sealing of the porous coating surface with a polysilazane Six coating variants with different combinations of the applied measures were applied on the piston crown and evaluated in a single cylinder research engine.
Technical Paper

Design and Development of Different Regenerative Braking Systems for a Commercial Electric Bus

In today’s world, energy saving has become a crucial need for day to day operations. It is because of this need for development and enhancement of energy efficient technology, various industries and organizations are researching on ways to improve the energy savings, which would not only be holistic but also increase their own brand value in the market. A similar such method that can have an immense positive impact on conservation of energy is “Regenerative Braking”, which is now being implemented by various OEMs. With the help of this concept, a decelerating vehicle’s kinetic energy is harvested and stored for utilization at a later stage; instead of dissipating this useful energy as heat such as in the conventional braking system. Such a concept of extracting and storing energy can be utilized by the emerging electric vehicles to generate electric current that can be used for recharging the battery, powering the onboard appliances and increasing the range of these vehicles.

Heat Treatment of Carbon and Low-Alloy Steel Parts, Minimum Tensile Strength Below 220 ksi (1517 MPa)

This specification, in conjunction with the general requirements for steel heat treatment covered in AMS2759, establishes the requirements for heat treatment of carbon and low-alloy steel parts to minimum ultimate tensile strengths below 220 ksi (1517 MPa). Parts are defined in AMS2759. Due to limited hardenability in these materials, there are size limits in this specification.