Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A new appraisal of the thermomechanical behaviour of a hybrid composite brake disc in a formula vehicle

2019-11-21
2019-28-2572
A new appraisal of the thermomechanical behaviour of a hybrid composite brake disc in a formula vehicle Research Objective This paper presents a hybrid composite brake disc with reduced Un Sprung Weight clearing thermal and structural analysis in a formula vehicle.Main purpose of this study is to analyse thermomechanical behaviour of composite brake disc for a formula vehicle under severe braking conditions. Methodology In the disk brake system, the disc is a major part of a device used for slowing or stopping the rotation of a wheel. Repetitive braking of the vehicle leads to heat generation during each braking condition. Based on the practical understanding the brake disc was remodelled with unique slotting patterns and grooves, using the selected aluminium alloy of (AA8081) with reinforcement particle of Silicon carbide (SiC) and Graphite (Gr) as a hybrid composite material for this proposed work.
Technical Paper

MITIGATION FOR EDGE CORROSION PROTECTION FOR AUTOMOTIVE BODIES

2019-11-21
2019-28-2561
TITLE: MITIGATION FOR EDGE CORROSION PROTECTION FOR AUTOMOTIVE BODIES. Keyword: Edge corrosion, Edge protection, Rust on edges, Corrosion mitigation. Objective: A major challenge to automotive industry is to protect the vehicle from corrosion in varying environment with respect to different service conditions. One of the main types of corrosion that affects aesthetic look is edge corrosion on sheet metal. Mostly edge is acting as starting point of corrosion due to unprotected metal exposed to environment. A special attention to be given to exposed edges to protect from rust formation. Methodology: To mitigate corrosion in visible area, various solution proposed in manufacturing process, material usage, sealer application, BIW design. Samples were prepared as per design of experiments with respect to manufacturing process condition and subjected for testing. Results: Proposed solutions were validated in manufacturing process line and reports are discussed.
Technical Paper

NEXT GENERATION POWER DISTRIBUTION UNIT IN WIRING HARNESS

2019-11-21
2019-28-2571
Keywords – Miniaturization, Low Profile (LP) Relays, Low Profile (LP) Fuses, Fuse box, Wiring Harness Research and/or Engineering Questions/Objective With the exponential advancement in technological features of automobile’s EE architecture, designing of power distribution unit becomes complex and challenging. Due to the increase in the number of features, the overall weight of power distribution unit increases and thereby affecting the overall system cost and fuel economy. The scope of this document is to scale down the weight and space of the power distribution unit without compromising with the current performance. Methodology Miniaturization involves replacing the mini fuses and J-case fuses with LP mini and LP J-case fuses respectively. The transition doesn’t involve any tooling modification and hence saves the tooling cost.
Technical Paper

Vehicle Interior cleanliness tracker

2019-11-21
2019-28-2466
The future of mobility is being driven towards fully autonomous driving. As a result, people spend majority of the time in vehicles for chores other than driving. The focus of automotive makers shifts towards providing best-in-class passenger comfort. One of the least focused area in passenger comfort is vehicle interior cleanliness which requires periodic human intervention. An intelligent vehicle can outsmart a human by self-caring to maintain the cleanliness elements on floor, seat and roof. This paper addresses subjects like wetness, dirt and stains in the vehicle interior utilizing the capability of Interior sensing platform. An internally mounted camera in the vehicle can capture images of the interior and apply image processing techniques to identify the subjects mentioned above. The wetness on the floor mats can lead to moldy odor, corrosion, failure of the electronic components in the car.
Technical Paper

Development of low cost life saving system for Automotive vehicles during Road Accidents.

2019-11-21
2019-28-2460
According to research study 45% of death cause due to not getting help on time to the injured person. Research has proven that if injured person is not found any option of help then they also loose the power to fight such critical situation due to psychological effect. When vehicle met accident, people are not getting on time support, this delay is the major cause of death in developing nations. Presently there is no any robust system available in market for passenger & commercial vehicles which helps to provide on time help to the injured persons & saves human life. In current situation low cost life saving device is need of our society. This paper deals with the design & development of the low cost-life saving device. This paper also comprises the scenario when any vehicle meet an accidents within certain speed limit then how the intelligent life saving device will work & save the life's.
Technical Paper

Design & analysis of 2 point aluminum upper control arm in modular multi link rear suspension system

2019-11-21
2019-28-2564
In current automobile market, due to the need of meeting future CO2 limits and emission standards, demand for hybrid systems is on the rise. In general, the requirements of modern automobile architecture demands modular chassis structure to develop vehicle variants using minimum platforms. The multi-link modular suspension system provides ideal solution to achieve these targets. To match ideal stiffness characteristics of system with minimum weight, aluminum links are proving a good alternative to conventional steel forged or stamped linkages. Design of current 2-point link (Upper Control Arm) is based on elasto-kinematic model developed using standard load cases from multi body dynamics. CAD system used is CATIA V5 to design upper control arm for rear suspension. This arm connects steering knuckle & rear sub frame. For Finite Element Analysis we used Hyperworks CAE tool to analyze design under all load cased & further optimization is done to resolve highly stressed zones.
Technical Paper

Thermal Challenges in Automotive Exhaust System through Heat Shield Insulation

2019-11-21
2019-28-2539
While advanced automotive system assemblies contribute greater value to automotive safety, reliability, emission/noise performance and comfort, they are also generating higher temperatures that can reduce the functionality and reliability of thesystem over time. Thermal management and insulation are extremely important and highly demanding in BSVI, RDE and Non-IC engine operating vehicles. Passenger vehicle and Commercial vehicle exhaust systems are facing multiple challenges such as packaging constraints, weight reduction andthermalmanagement requirements.Frugal engineering is mandatory to develop heat shield in the exhaust system with minimum heat loss. The focus of the paper is to design, develop and validate heat shield products with different variables such as design gap, insulation material, sheet metal thickness and manufacturing processes. 1D and 3D computational simulations are performed with different gaps from 3 mm to 14 mm are considered.
Technical Paper

Sensor Perception and Motion Planning for an Autonomous Material Handling Vehicle.

2019-10-28
2019-01-2611
The ground mobile robotics study is structured on the two pivotal members namely Sensor perception and Motion planning. Sensor perception or Exteroception comprises the ability of measurement of the layout of environment relative to vehicle’s frame of reference which is a necessity for the implementation of safe navigation towards the goal destination in an unstructured environment. Environment scanning has played a significant role in mobile robots application to investigate the unexplored environment in the sector of defence while transporting and handling material in warehouse and hospitals. Motion Planning is a conjunction of analysing the sensor’s information about the local frame and global map while being able to plan the route from starting point to the target destination. In this paper, a 3600 2-D LiDAR is used to capture the spatial information of the surrounding, the scanning results are presented in a local and global map.
Training / Education

Basics of Silicone Rubber Science and Technology

2019-10-14
Silicone rubber is comprised of inorganic-organic polymers. These materials consist of an inorganic backbone with organic side groups attached to silicon atoms. This family of polymers possesses unmatched versatility giving the formulator and user multiple forms and methods to cross link the polymers into rubber materials having the widest service temperature range of any rubber material. This course is designed to provide the participant with a thorough understanding of silicone’s engineering characteristics.
Technical Paper

Machinability and parametric optimization of Inconel 600 using Taguchi-Desirability analysis under dry environment

2019-10-11
2019-28-0068
Inconel 600 is a face-centered cubic structure and nickel-chromium alloy. Alloy 600 has good resistance to oxidation, corrosion resistant, excellent mechanical properties and good creep rupture strength at higher temperature. Alloy 600 is used in chemical and food processing, heat treating, phenol condensers, soap manufacture, vegetable, and fatty acid vessels. In this context, the present paper investigates the machinability characteristics of Alloy 600 under dry environment. Also, the parametric effect of cutting speed, feed rate and cutting depth on the force, surface roughness and tool wear are carried out using 3-Dimensional surface and 1-Dimensional plots. The optimal parameters are determined systematically based on Taguchi-desirability analysis with turned with TiAlN coated carbide insert. From the graphical analysis of collected data, the low rate of feed and moderate cutting for roughness and cutting force and average feed rate for tool wear with low cutting depth.
Technical Paper

Investigation of machinability characteristics and chip morphology on Inconel 718: Dry and MQL

2019-10-11
2019-28-0066
Nickel based superalloys Inconel 718 has a unique property. It contains oxidation corrosion resistant materials. This property makes it highly suitable for extreme environments subjected to pressure and heat. In the present study, dry and MQL(Minimum Quantity Lubrication) experiments are carried out on Inconel 718 alloy based on designed L16 orthogonal array using the advanced coated cutting tool and uncoated tool, respectively. The levels of turning parameters are varied at 70, 120, 170 and 220 m/min of turning speed, 0.1, 0.15, 0.2 and 0.25 mm/rev of feed rate and 0.3, 0.4, 0.5 and 0.6 mm of cutting depth. The cutting forces, surface roughness, flank wear, and chip morphology are taken for current investigation. The factor effect on output responses is studied using responses surface 3D and 1D plots.
Technical Paper

Investigation of machinability characteristics on turning of Nimonic 90A using Al2O3 and CNT Nanofluids in Groundnut oil

2019-10-11
2019-28-0072
Nimonic 90A alloy is a nickel-chromium-cobalt alloy and found as a potential material for turbine blades, discs, forgings, a ring section, and hot-working tools. This paper presents the effect of concentration along with cutting speed and feed rate on Fz: cutting force, Ra: surface roughness and Vba: tool wear with the application of two different nanofluids (NFS) on turning of Nimonic 90A by AlTiN PVD carbide cutting inserts. The nanoparticles suspended in oil taken for present investigation are nAl2O3, nCNT, and groundnut oil. The Taguchi L9 orthogonal array parameter design and response surface optimization has been employed. 3D surface plots, 1D main effects plots, Taguchi S/N and variance tests are used to study the effect of concentration on the machining of Nimonic 90A. The statistical analysis revealed % concentration for nCNT and cutting speed for nAl2O3 are found as an influenced parameter on performance characteristics.
Technical Paper

Experimental investigation on turning characteristics of TiC/MoS2 nanoparticles reinforced Al7075 using TiN coated cutting tool

2019-10-11
2019-28-0165
In recent years, aluminum metal matrix composites (Al-MMC) are found as a potential material for numerous applications owing to its good tribological and mechanical properties. In this work, the machining characteristics of aluminum alloy (Al7075) reinforced with TiC/MoS2 having nanoparticle. The samples of aluminum metal matrix composites by varying TiC in 0, 2 and 4 and MoS2 in 0 and 2 of the percentage weight of aluminum alloy (Composite 1(Al7075), Composite 2 (Al7075/2TiC/2MoS2) and composite 3 (Al7075/4TiC/2MoS2), respectively) are fabricated by the stir-casing method. The turning characteristics of the developed metal matrix composites are studied at various parameters such as cutting velocity (30 m/min, 60 m/min and 90 m/min), cutting depth (0.5 mm, 1.0 mm and 1.5 mm) and composites (1, 2 and 3) using TiN coated cutting tool by dry turning at 0.05 mm/rev feed rate.
Technical Paper

Squeak behavior of plastic interfaces

2019-10-11
2019-28-0083
Automotive is getting advanced and increasingly comfortable with new technologies and demand from customers. Car cabins have become much quieter as compared yesteryears. Where the outside noise has gone down significantly, secondary and small noises like squeak and rattle have become more prominent. Squeak though a transient and short lived, is an unexpected noise and often considered as an irritant. There is an increasing need felt to eliminate squeak completely from the interiors of the vehicle where choice materials play dominant role. This article briefs about the work done on evaluating different plastic interfaces for squeak behavior using Stick-Slip method. Some plastic surfaces were even tested with other interfaces like leather and vinyl coated fabrics. Choice of plastic material and interfaces to be tested were shortlisted after studying many different vehicles and benchmarking.
Technical Paper

Turning of Inconel 825 with coated carbide tool applying vegetable-based cutting fluid mixed with CUO, Al2O3 and CNT Nanoparticles by MQL

2019-10-11
2019-28-0060
Inconel 825 is nickel (Ni)-iron (Fe)-chromium (Cr) alloy with additions of copper (Cu), molybdenum (Mo), and titanium (Ti). The alloy has excellent resistance to corrosion and is often the most cost-effective alloy in sulphuric acid piping vessels and chemical process equipment. No attempt of applying MQL with the addition of nanoparticles was reported conferring to the works accessed. The present study is focused on evaluating the effect of the addition of nanoparticles (CUO, Al2O3 and CNT) in vegetable oil applied by MQL mode during turning of Inconel 825 with coated carbide tool. Cutting force, surface roughness and tool wear are evaluated. The results showed that the addition of nCNT substantially improved the machining performance, smaller flank and crater wear on the tool edge, while the adhesion and abrasion are observed as wear mechanism and better results are obtained at 0.5% of nCNT+ vegetable oil to produce the lowest values.
Technical Paper

Parameter optimization during minimum quantity lubrication turning of Inconel 625 alloy with CUO, Al2O3 and CNT Nanoparticles dispersed vegetable-oil-based cutting fluid

2019-10-11
2019-28-0061
Inconel 625, nickel based alloy, is found in gas turbine blades, seals, rings, shafts, and turbine disks. Application of Minimum Quantity Lubrication (MQL) in turning process provides as an advanced and green machining concept. The addition of nanoparticle of weight percentage parameters along with machining parameters has a significant influence on the machining characteristics and so, parameter optimization is vital role to obtain the best machining performance. In this study, MQL with CUO, Al2O3 and CNT nanoparticles dispersed vegetable-oil-based cutting fluid is prepared in turning of Inconel 625. The nanofluids are prepared by dispersing 0.1, 0.25, and 0.5 wt% into vegetable oil-based nanofluids to improve the machining characteristics of the Inconel 625. Then Taguchi-Desirability analysis optimization method is used to evaluate the effect of MQL+ machining parameters on the turning characteristic and determine the optimal conditions combination.
Technical Paper

Study of Mechanical Properties of Similar and Dissimilar Metals of Monel 400 and SS 321by using Gas Tungsten Arc Welding (GTAW) Process

2019-10-11
2019-28-0141
In the present study the fabrication of joints between the nickel base alloys and steels of various grades have been under taken, joining of these metals has assumed new importance by virtue of their widespread in nuclear and aerospace applications. Such joints provide excellent strength, oxidation and corrosion resistance. This paper deals with the study of weldability, and mechanical properties of weld joints of two different alloys such as nickel based alloy- monel 400 and austenitic stainless steel AISI 321. The joining of the similar and dissimilar metals is carried out by GTAW process by employing two different types of filler rods such as SS321 and ERNiCrMo-3.
Technical Paper

Experimental study on tool wear and cutting temperature during machining of Nimonic C-263 and Waspaloy based on Taguchi Method and Response Surface Methodology

2019-10-11
2019-28-0144
Nickel based materials of Nimonic C-263 and Waspaloy are used nowadays for aerospace applications owing to its superior strength properties that are maintained at a higher temperature. Tool wear and cutting temperature in the vicinity of cutting edge are two essential machinability characteristics for any cutting tool. In this regard, this study is pursued to examine the influence of factors on measuring of tool wear (Vba) and cutting temperature (Ts) during dry machining of two alloys are studied experimentally based on Taguchi method and Response surface methodology. Taguchi’s L16 orthogonal array is used to design the experiment and a PVD (TiAlN), CVD (TiN/Al2O3/TiCN) coated carbide inserts are used on turning of two alloys. The factor effect on output responses is studied using analysis of variance, empirical models and responses surface 3D plots. To minimize the response and to convert into one single optimum level, responses surface desirability function approach is applied.
Technical Paper

Corrosion and Corrosive Wear of Steel for Automotive Exhaust Application

2019-10-11
2019-28-0178
In the current scenario, durable exhaust system design, development and manufacturing are mandatory for the vehicle to be competitive and challenging in the automotive market. Material selection for the exhaust system plays a major role due to the increased warranty requirements and regulatory compliances. The materials used in the automotive exhaust application are cast iron, stainless steel, mild steel. The materials of the exhaust systems should be heat resistant, wear and corrosion resistant. Stainless steel is the most commonly used material in the automotive exhaust system. Due to increasing cost of nickel and some other alloying elements, there is a need to replace the stainless steel with EN 8 steel. Recent trends are towards light weight concepts, cost reduction and better performance. In order to reduce the cost and to achieve better wear and corrosion resistance, the surface of the EN 8 steel is modified with coatings.
Technical Paper

Experimental Investigation Mechanical and Corrosion Characteristics of Friction Stir Welded Aluminum Alloy 7075-T6

2019-10-11
2019-28-0175
Friction Stir Welding (FSW) is a quite new solid-state joining process. This joining technique is energy efficient, environment friendly, and adaptable. In particular, it can be used to join high-strength Aluminium alloys and other metallic alloys that are difficult to weld by conventional fusion welding. Friction Stir Welding heats metal to the temperature below re crystallization. FSW avoids welding defects like porosity and hot cracking which are frequently in conventional welding techniques due to alloy’s very low re-crystallization temperature and higher heat dissipating nature. This process combining deformation heating and mechanical work to obtain high defect free joints. Aluminum alloy 7075-T6 is generally used in various industrial applications such as automobile, ship building and aerospace due to their light weight, good mechanical properties and high corrosion resistance.
X