Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A new appraisal of the thermomechanical behaviour of a hybrid composite brake disc in a formula vehicle

2019-11-21
2019-28-2572
A new appraisal of the thermomechanical behaviour of a hybrid composite brake disc in a formula vehicle Research Objective This paper presents a hybrid composite brake disc with reduced Un Sprung Weight clearing thermal and structural analysis in a formula vehicle.Main purpose of this study is to analyse thermomechanical behaviour of composite brake disc for a formula vehicle under severe braking conditions. Methodology In the disk brake system, the disc is a major part of a device used for slowing or stopping the rotation of a wheel. Repetitive braking of the vehicle leads to heat generation during each braking condition. Based on the practical understanding the brake disc was remodelled with unique slotting patterns and grooves, using the selected aluminium alloy of (AA8081) with reinforcement particle of Silicon carbide (SiC) and Graphite (Gr) as a hybrid composite material for this proposed work.
Technical Paper

High rigidity and light weight bumper material development in India

2019-11-21
2019-28-2553
Vehicle weight reduction becomes important at the view point of fuel efficiency improvement and CO2 reduction in India also as well as developed countries. With this background, High tensile and Super high tensile steel application has become increasing. Similary, weight reduction of big plastic parts like bumper face is one of the most important items, so Honda has developed Thin-wall and light weight bumper face. In the development of light weight bumper, rigidity, impact strength and flowability which are main requirement are cotradictory property. It is necessary to develop new material to achieve this technical concern. Moreover, we verified part shape and thickness optimization to achieve part requirement. Established high property material and part manufacturing technology were applied for current CITY firstly, and it has been expanded to other models sequentially to contribute weight reduction for Honda vehicles.
Technical Paper

C123 Methodology for concept design of the Chassis Frame

2019-11-21
2019-28-2534
Objective This paper explores the usage of Altair simulation driven concept process, C123 for developing the chassis frame of the SUV along with Multidisciplinary optimisation tool. C123 process is useful for strategic & systematic usage of optimisation to generate design alternatives, trade-off information, best balanced designs, design sensitivities, to actively support the concept development process on daily basis. Methodology C123 is used for developing initial concept design of the chassis frame of the SUV. C123 process is independent of vehicle architectures, manufacture process (e.g. extrusions, sheet metal) & material selection (e.g. metals, composites, mixed etc.) and platform sharing strategy. C1 process is used for identification of optimum Structural Layout, C2 is for rapid optimum Sizing of idealized Sections, C3 is used for detailed optimum Sizing of Manufacturable Sections. Automatic process is used for handling pre and post processing process very efficiently.
Technical Paper

STATISTICAL ANALYSIS OF LOW CYCLE FATIGUE PROPERTIES IN METALS FOR ROBUST DESIGN

2019-11-21
2019-28-2576
Objective: In ground vehicle industry, strain life approach is commonly used for predicting fatigue life. This approach requires use of fatigue material properties such as fatigue strength coefficient (σf'), fatigue strength exponent (b), fatigue ductility coefficient (εf'), fatigue ductility exponent (c), cyclic strength coefficient (K′) and cyclic strain hardening exponent (n′). These properties are obtained from stable hysteresis loop of constant amplitude strain-controlled uniaxial fatigue tests. Usually fatigue material properties represent 50th percentile experimental data and doesn't account possible material variation in the fatigue life calculation. However, for robust design of vehicle components, variation in material properties need to be taken into account. In this paper, methodology to develop 5th percentile (B5), 10th percentile (B10) and 20th percentile (B20) fatigue material properties are discussed.
Technical Paper

Suspension hard points optimisation

2019-11-21
2019-28-2419
Objective This paper explores the usage of Altair simulation driven optimisation process, Front Suspension hard points of a sedan Car model are optimised for specific target toe curves using MotionView, MotionSolve and HyperStudy This process gives the optimal hard point values to match the target curves without much iterations. Methodology Parametric Multibody model of the front end of sedan is built in MotionView. To Carry out optimisation HyperStudy is used where few of the suspension hard points which affect the toe curves are chosen as design variable. For the chosen Design variables upper and lower bound limits are specified. Ride, Roll and lateral force tests are performed. Optimisation is performed using HyperStudy where it iterates the suspension hard points to match the target toe curves. Each iteration response can be visualized in HyperStudy and can be compared with the target toe curve.
Technical Paper

Transient Response Analysis and Synthesis of an FSAE Vehicle using Cornering Compliance

2019-11-21
2019-28-2400
OBJECTIVE Race vehicles are designed to achieve higher lateral acceleration arising at cornering conditions. A focused study on the steady state handling of the car is essential for the analysis of such conditions. The transient response analysis of the car is also equally important to achieve best driver-car relationship and to quantify handling in the range suitable for a racing car. This research aims to investigate the design parameters responsible for the transient characteristics and optimize those design parameters. This research work examines the time-based analysis of the problem to truly capture the non-linear dynamics. Apart from tires, chassis can be tuned to optimize vehicle handling and hence the response times. METHODOLOGY To start with, the system is modelled with governing parameters and simulation is carried out to set baseline configurations. Steady state and transient handling simulations run independent of each other with independent logic, coded on MATLAB.
Technical Paper

Optimization of the critical parameters affecting the fuel lid performance

2019-11-21
2019-28-2413
Fuel lid is one of the parts which are mostly operated mechanically by the end user while filling the fuel. Therefore part design should be done in such a manner that it can be operated smoothly without any hassles. The conventional steel fuel filler doors are of two types: Three-piece type fuel filler doors also known as the dog-leg type and two-piece type fuel filler doors also known as the butterfly type. Both types of fuel filler doors have a pin that acts as a rotational hinge axis about which the fuel filler door opens and closes. Depending on the styling and shape of the side body outer, fuel lid type is decided. In the current study, dog-leg type fuel lid is considered. The factors that primarily affect the opening-closing performance are the weight of fuel lid, hinge axis, and the friction at the hinge area. The orientation of the hinge axis is derived from the profile of the side body outer panel. The fuel lid weight and hinge axis are decided in the initial design stage.
Technical Paper

Correlation of Objective and Subjective test results for Ride comfort with Heave, Pitch and Roll motion for a Passenger Vehicle

2019-11-21
2019-28-2410
Research Objective The importance of evaluating ride comfort with high degrees of accuracy objectively and its correlation with subjective perception is increasing day by day because of the long duration of the driving experience. The complex motion of the vehicle which is the combination of heave, roll and pitch motion is responsible for causing extreme uneasiness to the driver as well as the passenger. In this paper, ride comfort evaluation is done on the highway with similar traffic conditions with the help of Vibration Dose Value Analysis, Suspension Working Space and Ride Diagram methods for two hatchbacks and its correlation with the complex motion like choppiness of the vehicle is established that will help us to enhance the driver ride experience. Methodology The ride testing is performed for two hatchbacks on a highway road with different kinds of terrain ranging from highly uneven road roughness to moderately smooth surface for a speed range of 60-100 kmph.
Technical Paper

FABRICATION AND WEAR CHARACTERISTICS BASALT FIBER REINFORCED POLYPROPYLENE MATRIX COMPOSITES

2019-11-21
2019-28-2570
Generally brake pads are manufacturing by use of asbestos materials, these materials are chemically harmful and toxic, affects human health. The present investigation fabricates polypropylene composites with mixing constant volume [5 Vol.%] of alumina nano particles and different volume percentages [0%, 5%, 10% & 15%] of basalt fibre by hand layup compression technique. The wear characteristics of polypropylene matrix composites were tested by dry sliding condition using pin on disc apparatus configuration with hardened steel counter-face at elevated temperature. The load was applied 30N to 70N with the interval of 20N and varying of sliding speed 300 rpm to 900rpm with the interval of 300rpm for the time period of 0-180 sec. The wear rate was decreases with addition of alumina nano particle and also increases the frictional force for the effect of basalt fibre content present in the composites. The co-efficient of friction was increases from 0.1 to 0.66 under normal loading condition.
Technical Paper

An alternate cost effective material for rocker arm used in heavy commercial vehicles

2019-11-21
2019-28-2550
Rocker arm in internal combustion engine is very important part which transfer the cam motion and force to the valve. In heavy commercial vehicles, the engine components are design for an infinite life (considerable higher than other components). Recently industries are working for light weight and optimized cost material. Hence it is required to have an optimized cost effective design of rocker arm without affecting its performance. A rocker arm should meet the stiffness and strength requirement. The objective of this study is to find out the alternate material for rocker arm which can provide the similar strength & stiffness as conventional rocker arm material. To achieve the performance and cost target, alternate material cast iron has been evaluated for rocker arm. Cast iron is lighter than the forged steel rocker arm, also it has a good frictional characteristic. Further bush is eliminated from the rocker arm assembly due to self-lubricant property of the cast iron rocker arm.
Technical Paper

Evaluating the Effect of Light Weighting Through Roll Stiffness Change on Vehicle Maneuverability and Stability

2019-11-21
2019-28-2406
Objective To achieve better fuel economy and reduced carbon footprint, OEMs are reducing the sprung and unsprung mass. This translates into a reduction in stiffness which profoundly deteriorates the handling/road holding characteristics of the vehicle. To model these changes in stiffness, modifications are made to suspension roll stiffness at the front and rear. This study compares different configurations of roll stiffness and evaluates vehicle behavior using frequency response characteristics and phase change of Yaw Gain recorded. The present work associates acquired data with subjective feedback to outline the shift in vehicle balance emerging from a variation of sprung and unsprung mass ratio. Methodology To study the frequency response characteristics of the vehicle, the pulse input is chosen for this. An ideal pulse input’s Fourier transform represents constant amplitude over all the frequency ranges. By giving a single input, the system is subjected to a range of frequencies.
Technical Paper

A Comparative Study on Microstructures and Mechanical Properties of Al-Gnps Composites Fabricated By Casting Method

2019-10-11
2019-28-0139
This paper describes an investigation on microstructures and mechanical properties of pure aluminium graphene nano platelets (GNPs) composites prepared by ultrasonic assisted stir casting technique. The proportion of GNPs varied from 0.5 to 2.0 wt. % in pure aluminium matrix with 99% purity. The investigations on composites revealed that Pure Al -1.0 % GNPs composite exhibited better mechanical properties with 48.49 % (~49%) increase in tensile strength and 34.53 % (~35%) increase in micro hardness compared to results of composites fabricated by stir casting technique. FESEM analysis was done to examine the surface morphology, whereas the Fractography of the tested composites and the XRD analysis was to inspect the phase analysis. The analysis revealed that there was uniform distribution of GNPs in the pure aluminium matrix due to cavitation effect with less porosity due to which there is significant enhancement in mechanical properties compare to composites by stir casting technique.
Technical Paper

Machinability and parametric optimization of Inconel 600 using Taguchi-Desirability analysis under dry environment

2019-10-11
2019-28-0068
Inconel 600 is a face-centered cubic structure and nickel-chromium alloy. Alloy 600 has good resistance to oxidation, corrosion resistant, excellent mechanical properties and good creep rupture strength at higher temperature. Alloy 600 is used in chemical and food processing, heat treating, phenol condensers, soap manufacture, vegetable, and fatty acid vessels. In this context, the present paper investigates the machinability characteristics of Alloy 600 under dry environment. Also, the parametric effect of cutting speed, feed rate and cutting depth on the force, surface roughness and tool wear are carried out using 3-Dimensional surface and 1-Dimensional plots. The optimal parameters are determined systematically based on Taguchi-desirability analysis with turned with TiAlN coated carbide insert. From the graphical analysis of collected data, the low rate of feed and moderate cutting for roughness and cutting force and average feed rate for tool wear with low cutting depth.
Technical Paper

Fabrication and machinability study of Al2219 metal matrix composites reinforced with SiN/MoS2 nanoparticles

2019-10-11
2019-28-0170
Composites materials are substituting constituents for traditional materials due to their remarkable properties, and the addition of nanoparticles gives a new development in the material domain. The nanoparticles influence on fabrication and machinability investigation study is essential as the composites to be used in applications like automotive and aerospace. The current study investigates the machinability characteristics of Al2219 based metal composites reinforced with nanoparticles of SiN/MoS2. Al2219- reinforcements (SiN and MoS2) composites are fabricated by the method of stir casting. Four different compositions (Al2219/SiN (2 wt% and 4 wt%), , Al2219/2 wt.% SiN/ 2 wt.% MoS2, Al2219/2 wt.% MoS2) are fabricated by varying the different weight percentages of nanoparticles reinforcements. An attempt is made to study the investigation analysis of force, surface roughness, and tool wear using CNC machine lathe to consider the effect of cutting speed, cutting depth and samples.
Technical Paper

Study of Mechanical Properties of Similar and Dissimilar Metals of Monel 400 and SS 321by using Gas Tungsten Arc Welding (GTAW) Process

2019-10-11
2019-28-0141
In the present study the fabrication of joints between the nickel base alloys and steels of various grades have been under taken, joining of these metals has assumed new importance by virtue of their widespread in nuclear and aerospace applications. Such joints provide excellent strength, oxidation and corrosion resistance. This paper deals with the study of weldability, and mechanical properties of weld joints of two different alloys such as nickel based alloy- monel 400 and austenitic stainless steel AISI 321. The joining of the similar and dissimilar metals is carried out by GTAW process by employing two different types of filler rods such as SS321 and ERNiCrMo-3.
Technical Paper

Corrosion and Corrosive Wear of Steel for Automotive Exhaust Application

2019-10-11
2019-28-0178
In the current scenario, durable exhaust system design, development and manufacturing are mandatory for the vehicle to be competitive and challenging in the automotive market. Material selection for the exhaust system plays a major role due to the increased warranty requirements and regulatory compliances. The materials used in the automotive exhaust application are cast iron, stainless steel, mild steel. The materials of the exhaust systems should be heat resistant, wear and corrosion resistant. Stainless steel is the most commonly used material in the automotive exhaust system. Due to increasing cost of nickel and some other alloying elements, there is a need to replace the stainless steel with EN 8 steel. Recent trends are towards light weight concepts, cost reduction and better performance. In order to reduce the cost and to achieve better wear and corrosion resistance, the surface of the EN 8 steel is modified with coatings.
X