Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

C123 Methodology for concept design of the Chassis Frame

2019-11-21
2019-28-2534
Objective This paper explores the usage of Altair simulation driven concept process, C123 for developing the chassis frame of the SUV along with Multidisciplinary optimisation tool. C123 process is useful for strategic & systematic usage of optimisation to generate design alternatives, trade-off information, best balanced designs, design sensitivities, to actively support the concept development process on daily basis. Methodology C123 is used for developing initial concept design of the chassis frame of the SUV. C123 process is independent of vehicle architectures, manufacture process (e.g. extrusions, sheet metal) & material selection (e.g. metals, composites, mixed etc.) and platform sharing strategy. C1 process is used for identification of optimum Structural Layout, C2 is for rapid optimum Sizing of idealized Sections, C3 is used for detailed optimum Sizing of Manufacturable Sections. Automatic process is used for handling pre and post processing process very efficiently.
Technical Paper

Mechanical Property Evaluation of Paper Honeycomb reinforced Plastics

2019-11-21
2019-28-2538
Mechanical Property Evaluation of Paper Honeycomb Reinforced Plastics Vignesh Balaji S G, Pradeep Hyundai Motor India Engineering Pvt. Ltd, Chennai. India Key Words: Paper Honeycomb, Epoxy Composites, Mechanical Properties, Tensile, Impact & Flexural Test Research and/or Engineering Questions/Objective : Composite Materials are widely being used in many engineering applications because of their desirable properties & Cost, Weight Effectiveness. They are widely being used as their Strength-Weight Ratio is Higher than any Other Material. Paper Honeycomb Material is basically a paper made of honeycomb shapes enforced between layers of Glass Mat. This paper deals with the evaluation of Tensile Strength, Flexural (Three-Point Bending) Strength & Flexural Modulus, Impact Strength of Paper Honeycomb Reinforced Epoxy Composites. The Scope of this Material defines the quality of Paper Honeycomb Reinforced Composites which can be used for Automotive Trim Parts.
Technical Paper

High Durable PU Metallic Monocoat system for tractor sheet metal application.

2019-11-21
2019-28-2541
In sheet metal painting for various applications like Tractor, Automobile, most attractive coating is metallic paints and it is widely applied using 3 coats 2 bake or 3 coat 1 bake technology. Both options, results in high energy consumption, higher production throughput time & lower productivity in manufacturing process. During various brainstorming & sustainable initiatives, paint application process was identified for alternative thinking to reduce burden on environment & save energy. Various other industry benchmarking & field performance requirement studies helped us identify the critical to quality parameters. We worked jointly with supplier to develop mono-coat system without compromising the performance & aesthetical properties. This results in achieving better productivity, elimination of two paint layers, substantial reduction in volatile organic content, elimination of one baking cycle and energy saving.
Technical Paper

LIGHT WEIGHTING OF ADDITIVE MANUFACTURED PARTS FOR AUTOMOTIVE PRODUCTION APPLICATIONS THROUGH TOPOLOGY OPTIMIZATION TECHNIQUES

2019-11-21
2019-28-2544
Rapidly enhancing engineering techniques to manufacture components in quick turnaround time have gained importance in recent time. Manufacturing strategies like Additive Manufacturing (AM) are a key enabler for achieving them. Unlike traditional manufacturing techniques such as injection molding, casting etc., AM unites advanced materials, machines, and software which will be critical for Industry 4.0. Successful application of AM involves a specific combination and understanding of these three key elements. In this paper the AM approach used is Fused Deposition Modelling (FDM). Since material costs contribute to 60% of the overall FDM costs, it becomes a necessity to optimize the material consumption of the produced parts. This paper reports case studies of 3D printed parts used in an Automobile plant’s production aids, which utilize computational methods(CAE), topology optimization and FDM constrains (build directions) to manufacture the part in the most optimal way.
Technical Paper

Characterization and Durability of Mold-In-Color Engineering Plastics

2019-11-21
2019-28-2542
Plastics are prone to photo oxidative and thermal oxidative degradation under usage conditions due to their chemical nature. From sustainability and cost standpoint, there is an increasing focus on Mold-In-Color (MIC) plastic materials. Simultaneously customer’s expectations on the perceived quality of these MIC parts has been increasing with attractive color and glossy appearance. A study was conducted to analyze the product quality and durability aspects over a prolonged exposure to accelerated weathering condition. Material selected for this study were injection molded specimens of ABS and PC/ABS used in automotive passenger vehicles.
Technical Paper

Design of Additive Manufactured Thermoplastic Component as FMVSS 201U Countermeasure

2019-11-21
2019-28-2547
Research and/or Engineering Questing/Objectives: Safety of the occupant in passenger cars is one of the regulatory requirements in many developed countries. This includes upper interior head impact load case of the unbelted occupant during crash (FMVSS 201U) as one of them. During a crash event the occupant head can collide with the interior parts of the vehicle, such as a headliner, pillar trim and other subsequent components in the loading direction. Injury on the head is quantified in terms of the Head Injury Criterion of a crash test dummy (HIC(d)) value which should be less than 1000 per standard. Several ways can be adopted to reduce the HIC(d) value. These include a change in the design of ribs in the safety plastic components, headliner profile change, use of countermeasure foam between headliner and the exterior sheet metal parts, or a combination of any of these to absorb the energy of impact.
Technical Paper

High rigidity and light weight bumper material development in India

2019-11-21
2019-28-2553
Vehicle weight reduction becomes important at the view point of fuel efficiency improvement and CO2 reduction in India also as well as developed countries. With this background, High tensile and Super high tensile steel application has become increasing. Similary, weight reduction of big plastic parts like bumper face is one of the most important items, so Honda has developed Thin-wall and light weight bumper face. In the development of light weight bumper, rigidity, impact strength and flowability which are main requirement are cotradictory property. It is necessary to develop new material to achieve this technical concern. Moreover, we verified part shape and thickness optimization to achieve part requirement. Established high property material and part manufacturing technology were applied for current CITY firstly, and it has been expanded to other models sequentially to contribute weight reduction for Honda vehicles.
Technical Paper

An alternate cost effective material for rocker arm for heavy commercial vehicles

2019-11-21
2019-28-2550
Rocker arm in internal combustion engine is very important part which transfer the cam motion and force to the valve. In heavy commercial vehicles, the engine components are design for an infinite life (considerable higher than other components). Recently industries are working for light weight and optimized cost material. Hence it is required to have an optimized cost effective design of rocker arm without affecting its performance. A rocker arm should meet the stiffness and strength requirement. The objective of this study is to find out the alternate material for rocker arm which can provide the similar strength & stiffness as conventional rocker arm material. To achieve the performance and cost target, alternate material cast iron has been evaluated for rocker arm. Cast iron is lighter than the forged steel rocker arm, also it has a good frictional characteristic. Further bush is eliminated from the rocker arm assembly due to self-lubricant property of the cast iron rocker arm.
Technical Paper

SIMULATION OF SOFTENING AND RUPTURE IN MULTILAYERED FUEL TANK MATERIAL

2019-11-21
2019-28-2557
Research and/or Engineering Questions/Objective Plastic automotive fuel tanks made up of blow molded, multi-layered, high-density polyethylene (HDPE) material can take complex shapes with varying thickness. Accidental drop of fuel tank from a height during handling can lead to development of cracks. Damage can also occur due to an impact during a crash. This can be catastrophic due to flammability of the fuel. The objective of this work is to characterize and develop a failure model for the fuel tank material to simulate damage and enhance predictive capability of CAE for chassis and safety load cases. Methodology Different aspects were considered to develop a characterization and modelling strategy for the HDPE fuel tank. Material properties can be influenced by factors such as, service temperature, rate of deformation, state of stress etc.
Technical Paper

MITIGATION FOR EDGE CORROSION PROTECTION FOR AUTOMOTIVE BODIES

2019-11-21
2019-28-2561
TITLE: MITIGATION FOR EDGE CORROSION PROTECTION FOR AUTOMOTIVE BODIES. Keyword: Edge corrosion, Edge protection, Rust on edges, Corrosion mitigation. Objective: A major challenge to automotive industry is to protect the vehicle from corrosion in varying environment with respect to different service conditions. One of the main types of corrosion that affects aesthetic look is edge corrosion on sheet metal. Mostly edge is acting as starting point of corrosion due to unprotected metal exposed to environment. A special attention to be given to exposed edges to protect from rust formation. Methodology: To mitigate corrosion in visible area, various solution proposed in manufacturing process, material usage, sealer application, BIW design. Samples were prepared as per design of experiments with respect to manufacturing process condition and subjected for testing. Results: Proposed solutions were validated in manufacturing process line and reports are discussed.
Technical Paper

MOLD IN COLOR DIAMOND WHITE ASA MATERIAL FOR AUTOMOTIVE EXTERIOR APPLICATION

2019-11-21
2019-28-2562
In this paper, mold in color diamond white ASA material has been explored for front bumper grill, fender arch extension and hinge cover applications. Other than aesthetic requirements, these parts have precise fitment requirement under sun load condition in real world usage profile. Structural durability of the design was validated by virtual engineering. Part design and material combinations with better tooling design iterations were analysed by using mold flow analysis. Complete product performances were validated for predefined key test metrics such as structural durability, thermal aging, cold impact, scratch resistance, and weathering criteria. This part met required specification. This mold in color ASA material-based parts has various benefits such as environmentally friendly manufacturing by eliminating environmental issues of coating, easily recycled, and faster part production because intended color achieved in one step during molding.
Technical Paper

A Mathematical Approach to Determine Die Wear during Forging Process and Validation by Experimental Technique

2019-11-21
2019-28-2563
The automotive industry is constantly trying to develop cost effective, high strength and lightweight components to meet the emission and safety norms while remaining competitive in the market. Forging process plays an important role to produce most of the structural components in a vehicle. Precision forging technology is used to produce components with little or no flash leading to elimination of machining process after forging. The load acting on the dies during net or near net forging is very high and leads to wear in the die. In order to have a good die it is important that die wear which is an inevitable phenomenon in a bulk metal forming processes is predicted mathematically. In this study a review on the vast number of studies done in the area of wear and various predictive models is carried out.
Technical Paper

To establish the correlation in between Computer Aided Engineering & physical testing of automotive parts returnable case (Stacktainer).

2019-11-21
2019-28-2569
Automotive returnable cases (Stacktainers) are being used to transport the automotive parts through surface & seaways. No automotive manufacturer wants to spend money on woods, paper & cardboard again and again, it`s better to pay once for robust & reusable cases. these provide better protection to parts from its manufacturing to assembly line of vehicle. While transporting, any kind of crack or failure of returnable cases may lead to loss of money, human & time. To ensure the safety, these pallets have to be validated for vibrations coming from surface irregularities, sea waves & load due to stacking of cases one above other. The objective of this study is to establish a correlation in between the physical testing & simulation in Computer added Engineering (CAE) of automotive returnable case (Stacktainers). There are different types of tests considered to validate the returnable case, rough road evaluation, Multi-axial Vibration & strength evaluation.
Technical Paper

ENHANCE STRENGTH, ACCURACY AND PRECISION OF THE 3D PRINTED ASSEMBLY AID GAUGES

2019-11-21
2019-28-2568
ENHANCE STRENGTH, ACCURACY AND PRECISION OF THE 3D PRINTED ASSEMBLY AID GAUGES Ramesh Kavalur1, Raghavendra Rao 1 1 Body in White, Manufacturing Engineering, General Motors Technical Centre India Pvt. Ltd, India, Keywords - Additive manufacturing, assembly aid gauges, 3D printer. Research Objective - Automotive manufacturing impressively implementing 3D printed jigs and fixtures. Traditional manufacturing of metal assembly aid gauges have limitations such as lead time and causes dent and rough marks on the outer panel of the body. On the other hand, 3D printed jigs and fixtures, demands more time (depends on complexity), have low level of precision and they offer lower strength. It is observed that this occurs because of the inefficient design and manufacturing without understanding the functionality and capability of the 3D printer.
Technical Paper

STATISTICAL ANALYSIS OF LOW CYCLE FATIGUE PROPERTIES IN METALS FOR ROBUST DESIGN

2019-11-21
2019-28-2576
Objective: In ground vehicle industry, strain life approach is commonly used for predicting fatigue life. This approach requires use of fatigue material properties such as fatigue strength coefficient (σf'), fatigue strength exponent (b), fatigue ductility coefficient (εf'), fatigue ductility exponent (c), cyclic strength coefficient (K′) and cyclic strain hardening exponent (n′). These properties are obtained from stable hysteresis loop of constant amplitude strain-controlled uniaxial fatigue tests. Usually fatigue material properties represent 50th percentile experimental data and doesn't account possible material variation in the fatigue life calculation. However, for robust design of vehicle components, variation in material properties need to be taken into account. In this paper, methodology to develop 5th percentile (B5), 10th percentile (B10) and 20th percentile (B20) fatigue material properties are discussed.
Technical Paper

Industry 4.0 in Agriculture

2019-11-21
2019-28-2442
In recent times, there has been an enormous shift towards automation in Auto as well as Agriculture Industry. Farming is playing an important role in the survival of world. Currently, agricultural industry is facing several challenges. These challenges can be reduced or removed by using automation in the agricultural tools and techniques. Industry 4.0 is the industrial fourth revolution which focused on automations in manufacturing technologies such as cyber physical systems, Internet of Things, artificial intelligence and cloud and cognitive computing. The development and improvement of the connectivity between agricultural tools is leading to significant progress in the agricultural practices. Advancement and automation of the technologies with Internet of Things (IoT), replacing traditional agricultural methodologies which causes wide range of improvements in the fields.
Technical Paper

INTRODUCTION OF GREEN LED LIGHT FOR SAFETY, POLLUTION CONTROL, FUEL SAVING AND MOTION INDICATOR IN AUTOMOBILES.

2019-11-21
2019-28-2455
Research and/or Engineering Questions/Objective - This invention relates to introduction of GREEN LED LIGHT for safety, fuel saving, pollution control and motion indicator in automobiles. At present, every vehicle is provided with red light, orange light and white light at the rear end of the vehicle. Now, there is no such light which can tell about the motion of the vehicle, whether the vehicle's engine is using its power to move or going on in rolling condition. According to the present invention a GREEN LED LIGHT is introduced at the rear end f the vehicle. The green led light is on when the vehicle is using its engine's power to move. At present, when we drive behind the vehicle we continuously make assumption about the motion of the vehicle in front of us. This GREEN LED LIGHT will give exact information about the motion of the vehicle.
Technical Paper

Thermal Challenges in Automotive Exhaust System through Heat Shield Insulation

2019-11-21
2019-28-2539
While advanced automotive system assemblies contribute greater value to automotive safety, reliability, emission/noise performance and comfort, they are also generating higher temperatures that can reduce the functionality and reliability of thesystem over time. Thermal management and insulation are extremely important and highly demanding in BSVI, RDE and Non-IC engine operating vehicles. Passenger vehicle and Commercial vehicle exhaust systems are facing multiple challenges such as packaging constraints, weight reduction andthermalmanagement requirements.Frugal engineering is mandatory to develop heat shield in the exhaust system with minimum heat loss. The focus of the paper is to design, develop and validate heat shield products with different variables such as design gap, insulation material, sheet metal thickness and manufacturing processes. 1D and 3D computational simulations are performed with different gaps from 3 mm to 14 mm are considered.
Technical Paper

Optimization of the critical parameters affecting the fuel lid performance

2019-11-21
2019-28-2413
Fuel lid is one of the parts which are mostly operated mechanically by the end user while filling the fuel. Therefore part design should be done in such a manner that it can be operated smoothly without any hassles. The conventional steel fuel filler doors are of two types: Three-piece type fuel filler doors also known as the dog-leg type and two-piece type fuel filler doors also known as the butterfly type. Both types of fuel filler doors have a pin that acts as a rotational hinge axis about which the fuel filler door opens and closes. Depending on the styling and shape of the side body outer, fuel lid type is decided. In the current study, dog-leg type fuel lid is considered. The factors that primarily affect the opening-closing performance are the weight of fuel lid, hinge axis, and the friction at the hinge area. The orientation of the hinge axis is derived from the profile of the side body outer panel. The fuel lid weight and hinge axis are decided in the initial design stage.
Technical Paper

Inspection and Maintenance of In-Use Motor Vehicles – Mitigating Environmental impact

2019-11-21
2019-28-2427
The existing rule no. 62 of CMVR, 1989 applies to various commercial vehicles and yet is unable to provide a promising template to have a concise format which will cover all the motor vehicles and their different components with more precise equipment plus virtual testing along with proper management of time during the bulk inspection of all the vehicles. This paper will include all the technicalities and the different course of actions which must be taken into account for the proper implementation of the desired regulations on the designated concern. The idea behind this paper is to have a compact procedural document for the periodical inspection and maintenance of all the motor vehicles running on the Indian Roads that adhere to the basic safety concerns of other on-road vehicles, the pedestrians and the surroundings.
X