Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The irrotational intensity: an efficient tool to understand the vibration energy propagation in complex structures using an FE Model.

2024-06-12
2024-01-2942
Although structural intensity was introduced in the 80's, this concept never found practical applications, neither for numerical nor experimental approaches. Quickly, it has been pointed out that only the irrotational component of the intensity offers an easy interpretation of the dynamic behavior of structures by visualizing the vibration energy flow. This is especially valuable at mid and high frequency where the structure response understanding can be challenging. A new methodolodgy is proposed in order to extract this irrotational intensity field from the Finite Element Model of assembled structures such as Bodies In White. This methodology is hybrid in the sense that it employs two distinct solvers: a dynamic solver to compute the structural dynamic response and a thermal solver to address a diffusion equation analogous to the thermal conduction built from the previous dynamic response.
Technical Paper

Making modal analysis easy and more reliable – Reference points identification by experimental prestudy

2024-06-12
2024-01-2931
Though modal analysis is a common tool to evaluate the dynamic properties of a structure, there are still many individual decisions to be made during the process which are often based on experience and make it difficult for occasional users to gain reliable and correct results. One of those experience-based choices is the correct number and placement of reference points. This decision is especially important, because it must be made right in the beginning of the process and a wrong choice is only noticeable in the very end of the process. Picking the wrong reference points could result in incomplete modal analysis outcomes, as it might make certain modes undetectable, compounded by the user's lack of awareness about these missing modes. In the paper an innovative approach will be presented to choose the minimal number of mandatory reference points and their placement.
Technical Paper

Generating Reduced-Order Image Data and Detecting Defect Map on Structural Components using Ultrasonic Guided Wave Scan

2024-06-01
2024-26-0416
The paper presents a theoretical framework for the detection and first-level preliminary identification of potential defects on aero-structure components while employing ultrasonic guided wave based structural health monitoring strategies, systems and tools. In particular, we focus our study on ground inspection using laser-Doppler scan of surface velocity field, which can also be partly reconstructed or monitored using point sensors and actuators on-board structurally integrated. Using direct wave field data, we first question the detectability of potential defects of unknown location, size, and detailed features. Defects could be manufacturing defects or variations, which may be acceptable from design and qualification standpoint; however, those may cause significant background signal artifacts in differentiating structure progressive damage or sudden failure like impact-induced damage and fracture.
Technical Paper

Automatic Maneuver Detection in Flight Data using Wavelet Transform and Deep Learning Algorithms

2024-06-01
2024-26-0462
The evaluation of aircraft characteristics through flight test maneuvers is fundamental to aviation safety and understanding flight attributes. This research project proposes a comprehensive methodology to detect and analyze aircraft maneuvers using full flight data, combining signal processing and machine learning techniques. Leveraging the Wavelet Transform, we unveil intricate temporal details within flight data, uncovering critical time-frequency insights essential for aviation safety. The integration of Long Short-Term Memory (LSTM) models enhances our ability to capture temporal dependencies, surpassing the capabilities of machine learning in isolation. These extracted maneuvers not only aid in safety but also find practical applications in system identification, air-data calibration, and performance analysis, significantly reducing pre-processing time for analysts.
Technical Paper

Anti-Rollover Control for All-Terrain Vehicle Based on Zero-Moment Point

2024-04-30
2024-01-5055
To investigate the rollover phenomena experienced by all-terrain vehicles (ATVs) during their motion caused by input from the road surface, a combined simulation using CarSim and Simulink has been employed to validate an active anti-rollover control strategy based on differential braking for ATVs, followed by vehicle testing. In the research process, a nonlinear three-degrees-of-freedom vehicle model has been developed. By utilizing a zero-moment point index as a rollover warning indicator, this approach could accurately detect the rollover status of the vehicle, particularly in scenarios involving low road adhesion on unpaved surfaces, which are characteristic of ATV operation. The differential braking, generating a roll moment by adjusting the amount of lateral force each braked tire can generate, was proved as an effective method to enhance rolling stability.
Technical Paper

Mathematical Model for the Rotation of a Door Including Vehicle Inclination

2024-04-17
2024-01-5045
The analysis presented in this document demonstrates the mathematical model approach for determining the rotation of a door about the hinge axis. Additional results from the model are the torque due to gravity about the axis, opening force, and the door hold open check link force. Vector mechanics, equations of a plane, and parametric equations were utilized to develop this model, which only requires coordinate points as inputs. This model allows for various hinge axis angles and door rotation angles to quickly be analyzed. Vehicle pitch and roll angles may also be input along with door mass to determine the torque about the hinge axis. The vector calculations to determine the moment arm of the door check link and its resulting force are demonstrated for both a standard check link design and an alternate check link design that has the link connected to a slider translated along a shaft.
Standard

Rings, Retaining – Spiral Wound, Uniform Section Corrosion and Heat Resistant, UNS S66286

2024-04-10
CURRENT
AS4299B
This procurement specification covers retaining rings of the spiral wound type with uniform rectangular cross-section, made of a corrosion and heat resistant age hardenable iron base alloy of the type identified under the Unified Numbering System as UNS S66286, work strengthened and heat treated to a tensile strength of 185 to 240 ksi at room temperature.
Standard

Steel, Corrosion- and Heat-Resistant, Bars, Wire, Forgings, Mechanical Tubing, and Stock for Forging and Heading, 15Cr - 25.5Ni - 1.2Mo - 2.1Ti - 0.006B - 0.30V (Alloy A286), Consumable Electrode Remelted, 1650 °F (899 °C) Solution Heat Treated

2024-04-10
CURRENT
AMS5734L
This specification covers a corrosion- and heat-resistant steel in the form of bars, wire, forgings, mechanical tubing up to 5.00 inches (127 mm), inclusive, in nominal diameter or least distance between parallel sides (thickness), and stock for forging or heading.
X