Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effects of Uniform and Non-uniform Electric Field on Premixed Combustion

The purpose of this study is to elucidate the flame propagation behavior under the electric field application by using the constant volume vessel. The laser induced breakdown applies the ignition and Nd:YAG laser is used. A homogeneous propane-air mixture is used and three equivalence ratios, 0.7, 1.0 and 1.5 are tested. In the uniform electric field, the premixed flame rapidly propagates toward both upward and downward directions and the flame front becomes a cylindrical shape. The maximum combustion pressure decreases with an increase of input voltage because of an increase of heat loss to the electrode, however the combustion duration is hardly affected by the input voltage. In the non-uniform electric field, the flame propagation velocity of downward direction increases. The combustion enhancement effect is remarkably when the input voltage is larger than 12 kV because the brush corona occurs and intense turbulence is generated on the flame front.
Technical Paper

The Influence of High Voltage Electrical Field on the Flame Propagation

The purpose of this study is to elucidate the development process of hot kernel generated by the laser induced breakdown and to clarify the relationship between corona discharge application and flame propagation. The mixture can be ignited by the laser induced breakdown. Nd:YAG laser is used for the ignition and laser light is optically focused on the central part of combustion chamber by a plano convex lens. The hot kernel is observed in the absence of combustion and is rapidly developed into the laser incidence side. The homogeneous propane-air mixture is used and six equivalence ratios between 0.7 and 1.5 are tested. For generating the positive corona discharge in the combustion chamber, a non-uniform electric field is applied by the needle to plane gap. In a lean mixture, the whole flame front shifts to downward from the breakdown point and, in the rich mixture region, the combustion is strongly enhanced.