Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Multi-Scale Modeling of Selective Laser Melting Process

2024-06-01
2024-26-0415
The Selective Laser Melting (SLM) process is employed in high-precision layer-by-layer Additive Manufacturing (AM) on powder bed and aims to fabricate high-quality structural components. To gain a comprehensive understanding of the process and its optimization, both modeling and simulation in conjunction with extensive experimental studies along with laser calibration studies have been attempted. Multiscale and multi-physics-based simulations have the potential to bring out a new level of insight into the complex interaction of laser melting, solidification, and defect formation in the SLM parts. SLM process encompasses various physical phenomena during the formation of metal parts, starting with laser beam incidence and heat generation, heat transfer, melt/fluid flow, phase transition, and microstructure solidification. To effectively model this Multiphysics problem, it is imperative to consider different scales and compatible boundary conditions in the simulations.
Technical Paper

Implementing Ordinary Differential Equation Solvers in Rust Programming Language for Modeling Vehicle Powertrain Systems

2024-04-09
2024-01-2148
Efficient and accurate ordinary differential equation (ODE) solvers are necessary for powertrain and vehicle dynamics modeling. However, current commercial ODE solvers can be financially prohibitive, leading to a need for accessible, effective, open-source ODE solvers designed for powertrain modeling. Rust is a compiled programming language that has the potential to be used for fast and easy-to-use powertrain models, given its exceptional computational performance, robust package ecosystem, and short time required for modelers to become proficient. However, of the three commonly used (>3,000 downloads) packages in Rust with ODE solver capabilities, only one has more than four numerical methods implemented, and none are designed specifically for modeling physical systems. Therefore, the goal of the Differential Equation System Solver (DESS) was to implement accurate ODE solvers in Rust designed for the component-based problems often seen in powertrain modeling.
Technical Paper

Investigation of Mechanical Properties and Weld nugget Characteristics of Thermoplastics by Using Friction Stir Welding with Heat Assisted Induction Coil

2024-03-05
2024-01-1943
Friction stir welding (FSW) is a method of welding that creates a weld trail by pressing a non-consumable rotating tool with a profiled pin on the adjacent surfaces while moving transversely along the welding direction. The method was initially used with metals and alloys, but more recently, thermoplastic polymers have also been included in its application. Investigations on FSW of thermoplastic polymers made of nylon and High-density polythene (HDPE) are presented here. Weld characteristics that are like those of the base materials are attempted to be achieved. Because of their unique nature and thermal conductivity, thermoplastics FSW differs from that of metals. The use of thermoplastic materials with conventional FSW procedures presents numerous difficulties and is currently ineffective. On the weld characteristics of nylon and HDPE, statistical methods were utilized to study the impact of temperature, rotational speed, and transverse speed.
Standard

Corrosion Control and Electrical Conductivity in Enclosure Design

2024-02-27
CURRENT
ARP1481B
Corrosion control is always of concern to the designer of electronic enclosures. The use of EMI gaskets to provide shielding often creates requirements that are in conflict with ideal corrosion control. This SAE Aerospace Recommended Practice (ARP) presents a compatibility table (see Figure 1) which has as its objective a listing of metallic couples that are compatible from a corrosion aspect and which still maintain a low contact impedance.
Technical Paper

A Study on the Thermal Interface Mechanisms of Natural Fiber/Fillers and Allotrope-Based Polymers

2024-02-23
2023-01-5129
Composites of polymers reinforced with synthetic/natural fibers are mainly used in engineering sectors such as automobiles, aerospace, and in household appliances due to their abrasion resistance, high toughness, strength, and high specific modulus. The purpose of this research is to provide an overview of fiber-matrix interfaces and interface mechanism that leads to enhanced properties. This article investigates how natural/synthetic fibers, mineral based-materials and additional allotropic materials work rapidly and effectively across interfaces.
Technical Paper

Heat Conduction through Natural Fiber/Carbon Nanotubes Filler Matrix Polymer Composite Slabs: An Experimental and Analytical Comparisons

2024-02-23
2023-01-5107
The latest developments in composite materials are anticipated by green engineering. Materials must be eco-friendly, recyclable, biodegradable, and easy to decompose. Researchers are interested in utilizing natural fibres, fillers, and synthetic active ingredients. Natural fiber-polymer composites can specify certain mechanical properties but are hydrophilic and weak, so they rarely meet the needed thermal properties. Composite material selection depends on the application and the superior properties of the fibre/filler: banana fibre (BF), ice husk (RH) and multi-walled carbon nanotubes (MWCNT). In this research article, a brief discussion of the heat transfer mechanism of composites and the development of energy conduction equation are performed for hybrid natural polymer composite. The maximum thermal conductivity observed for 10BF/10RH/1MWCNT wt.% composite is 0.2694 W/mK.
Technical Paper

Structure and Behaviour Characteristics of Aluminum –Nickel- Zinc Alloy by Spray Forming

2024-02-23
2023-01-5120
The microstructure of the alloy and the manner in which it responds to heat treatment has been investigated. The alloy was aged at 550OC when it was initially spray-formed, or when its thickness was decreased by 38%. Before further aging of some specimens, a four-hour solution treatment at 1015OC was performed. The subsequent phase was a cold deformation that was barely 60% of the sample's initial thickness. The alloys' electrical conductivity and hardness may be evaluated based on how long they had been created. Following solution treatment and cold rolling, the alloy's peak hardness was around 380 kgf/mm2. In samples aged immediately under spray-produced conditions, the maximum peak hardness of 255 kgf/mm2 was attained. Conductivities in freshly cold-rolled samples could reach up to 75% of the standard for annealed copper internationally. It looks at the microstructural features of this alloy in this context, paying close attention to how various processing conditions affect them.
Technical Paper

Influence of Diameter Ratio on the Mechanical Properties of Lap Joints in Friction Stir Welding of 2014 Aluminum Alloy

2024-02-23
2023-01-5111
The increased adoption of AA2014 Aluminum alloy within the manufacturing sector can be attributed to its lightweight properties and other attributes that position it as an appealing substitute for steel. Notably, AA2014 Aluminum alloy is employed in the production of components and frameworks for aircraft engines. However, conventional welding techniques do not always seamlessly apply to aluminum alloys due to aluminum's high thermal conductivity, pronounced susceptibility to oxidation, and comparatively low melting point. These characteristics can give rise to challenges such as burn-through and porosity during welding. To tackle these issues, the application of friction stir welding (FSW), a solid-state welding method, has been embraced. In the creation of lap joints, five distinct tools, each featuring a different ratio of tool shoulder diameter (D) to pin diameter (d), ranging from 2 to 4, were employed.
Technical Paper

Enhancement of Mechanical and Thermal Characteristics of Automobile Parts using Flax/Epoxy-Graphene Nanofiller Composites

2024-02-23
2023-01-5116
With the evolving demand in the automobile industry for lightweight and sustainable components, the study of natural fiber composites has gained significance. Such fibers are economically efficient and offer advantageous weight-specific properties. Additionally, they are non-abrasive and environmentally degradable, marking them as viable alternatives to conventional automobile materials. This research emphasizes the flax-based composite, developed using the hand lay-up method and augmented with three distinct graphene nanofillers. The graphene fillers are categorized as large nanorods (dimensions 3-5 nm, lengths 150-300 nm), small nano threads (dimensions 6-12 nm, lengths under 50 nm), and spherical particulates (dimensions 29-39 nm). Reinforcement was consistently maintained at 2%, 4%, and 6% by weight.
Technical Paper

Thermal Management of on-Board Electrical Vehicle Charger through AlN Coating

2024-01-16
2024-26-0194
Vehicle electrification is game changer for automotive sector because of major energy and environmental implications driven by high vehicle efficiency. However, EVs are facing challenges on life cycle assessment (LCA), charging, and driving range compared to conventional fossil-fueled vehicles. One of the key features that impacts the efficiency of an EV is its battery charging system which is done using an On-Board Charger (OBC). OBCs, are primarily used to convert DC-power from high-voltage battery pack to AC-power. They contain different power-electronic devices such as MOSFETs, diodes, magnetics etc. These devices generate a lot of heat and require an efficient thermal management strategy. Through CAE Thermal analysis it was identified that amongst these components, transformers and diodes are major source of heat. Temperature observed at these component locations were in the range of 90-105 °C, compared to other components (45-75°C).
Technical Paper

Corrosion Behavior of Bare & Organic Coated ADC-12 Used for Heat Sink Enclosure of on-Board Charger

2024-01-16
2024-26-0196
The automotive sector trend is moving towards vehicle electrification that provides great energy and environmental implications. However, Electrical Vehicles (EVs) are facing challenges in term of charging, driving range and life cycle with respect to existing vehicles. One of the key components in EV which is responsible for charging is On-Board Charger (OBC). OBCs are mainly used in converting DC power from battery pack to AC power and contains different power-electronic devices such as MOSFETs, diodes, magnetics etc. Heat-sinks are used to transfer the heat generated by these electronics and also as an enclosure to accommodate the electronics. Aluminum based alloy-ADC-12 generally used for manufacturing of OBC-enclosure due to its light weight, easy castability and good thermal conductivity. Although ADC-12 aluminum alloy has high corrosion resistance, specific environment condition or situation may accelerate corrosion with extended storage in rainy and salty environments.
Standard

Coupling Assembly, Threadless, Flexible, Self-Locking, Fixed Cavity, High Conductivity, Self-Bonding, Part Specification

2023-12-18
CURRENT
AS7510B
This SAE Aerospace Standard (AS) defines the requirements for a threadless, flexible, high conductive, self-bonding coupling assembly which, when installed on defined ferrules, provides a flexible connection for joining ducting and components in pressurized fluid systems. The assembled coupling is designed to provide interchangeability of parts and components between qualified manufacturers for use from -65 to +265 °F at 130 psi nominal operating pressures and for the service life of the aircraft system. FAR 23.954, FAR 25.603, FAR 25.605, FAR 25.609, FAR 25.613, FAR 25.901, FAR 25.954, and FAR 25.981 certification requirements have identified the need for high-current capable flexible fluid assembled couplings. The coupling assembly does not require inspection or maintenance to remain current capable for the life of the aircraft.
Standard

Fuel Filter - Initial Single-Pass Efficiency Test Method

2023-12-13
CURRENT
J1985_202312
This SAE Standard is intended for all sizes of fuel filters, so a variety of test stands may be required depending upon flow rate. The low contamination level, downstream clean-up filter, and short duration of the test ensure that the particle retention ability of the filter is measured in a single pass, as no appreciable loading or regression will occur.
Technical Paper

Application of Taguchi Based ANFIS Approach in Wire Electrical Discharge Machining of Inconel 625 for Automobile Applications

2023-11-10
2023-28-0148
Nickel-based superalloys are most commonly engaged in a numerous engineering use, including the making of food processing equipment, aerospace components, and chemical processing equipment. These materials are often regarded as difficult-to-machine materials in conventional machining approach due to their higher strength and thermal conductivity. Various methods for more effective machining of hard materials such as nickel-based superalloys have been developed. Wire electrical discharge machining is one of them. In this paper, an effect has been taken to develop an adaptive neuro-fuzzy inference system for predicting WEDM performance in the future. To analyse the model’s variable input, the paper employs the Taguchi’s design and analysis techniques. The evolved ANFIS model aims to simulate the process’s various characteristics and predicted values. A comparison of the two was then made, and it was discovered that the predicted values are much closer to the actual outcomes.
Technical Paper

Machinability Studies and the Evolution of Hybrid Artificial Intelligent Tools for Advanced Machining of Nickel Alloy for Aerospace Applications

2023-11-10
2023-28-0065
Nickel-based superalloys are frequently adopted in various engineering applications, such as the production of food processing equipment, aerospace parts, and chemical processing equipment. Because of higher strength and thermal conductivity, they are often regarded as difficult-to-machine materials in certain processes. Various methods were evolved for machining the hard materials such as Nickel-based superalloys more effective. One of these is wire electrical discharge machining. In this paper, we will discuss the development of an artificial neural network model and an adaptive neuro-fuzzy inference system that can be used to predict the future performance of Wire Electrical Discharge Machining (WEDM). The paper uses the Taguchi and Analysis of Variance (ANOVA) design techniques to analyze the model’s variable input. It aims to simulate the various characteristics of the process and its predicted values.
X