Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Set-up of an in-car system for investigating driving style on the basis of the 3D-method

2024-07-02
2024-01-3001
Investigating human driver behavior enhances the acceptance of the autonomous driving and increases road safety in heterogeneous environments with human-operated and autonomous vehicles. The previously established driver fingerprint model, focuses on the classification of driving style based on CAN bus signals. However, driving styles are inherently complex and influenced by multiple factors, including changing driving environments and driver states. To comprehensively create a driver profile, an in-car measurement system based on the Driver-Driven vehicle-Driving environment (3D) framework is developed. The measurement system records emotional and physiological signals from the driver, including ECG signal and heart rate. A Raspberry Pi camera is utilized on the dashboard to capture the driver's facial expressions and a trained convolutional neural network (CNN) recognizes emotion. To conduct unobtrusive ECG measurements, an ECG sensor is integrated into the steering wheel.
Journal Article

Evaluation of DAMAGE Algorithm in Frontal Crashes

2024-06-28
2023-22-0006
With the current trend of including the evaluation of the risk of brain injuries in vehicle crashes due to rotational kinematics of the head, two injury criteria have been introduced since 2013 – BrIC and DAMAGE. BrIC was developed by NHTSA in 2013 and was suggested for inclusion in the US NCAP for frontal and side crashes. DAMAGE has been developed by UVa under the sponsorship of JAMA and JARI and has been accepted tentatively by the EuroNCAP. Although BrIC in US crash testing is known and reported, DAMAGE in tests of the US fleet is relatively unknown. The current paper will report on DAMAGE in NCAP-like tests and potential future frontal crash tests involving substantial rotation about the three axes of occupant heads. Distribution of DAMAGE of three-point belted occupants without airbags will also be discussed. Prediction of brain injury risks from the tests have been compared to the risks in the real world.
Technical Paper

Development of Deployment Mechanism for RAMBHA-LP Payload Onboard Chandrayaan-3 Lander

2024-06-01
2024-26-0455
RAMBHA-LP (Radio Anatomy of Moon Bound Hypersensitive Ionosphere and Atmosphere - Langmuir Probe) is one of the key scientific payloads onboard the Indian Space Research Organization’s (ISRO) Chandrayaan-3 mission. Its objectives were to estimate the plasma density and its variations on the near lunar surface. The probe was initially kept in a stowed condition attached to the lander. A mechanism was designed and realized to meet the functional requirement of deploying the probe at a distance of 1 meter, equivalent to the Debye length of the probe in the moon’s plasma environment. The probe deployment mechanism consists of the Titanium alloy spherical probe with a Titanium Nitride coating on its surface to achieve a constant work function, a long carbon-fiber-reinforced polymer boom, a double torsion spring, a dust-protection box, and a shape-memory alloy-based Frangibolt actuator for low-shock separation. The entire mechanism weighed less than 1.5 kilograms.
Event

Program - Evolving to MedDev 2021

2024-04-18
Evolving to MedDev provides a new opportunity for executives in aerospace, automotive and medical devices companies to connect and develop long-term growth strategies and find ways to meet the increased short-term demand for medical supplies

Evolving to MedDev 2022

2024-04-18
Evolving to MedDev provides a new opportunity for executives in aerospace, automotive and medical devices companies to connect and develop long-term growth strategies and find ways to meet the increased short-term demand for medical supplies

Sponsor - Evolving to MedDev 2022

2024-04-18
Evolving to MedDev provides a new opportunity for executives in aerospace, automotive and medical devices companies to connect and develop long-term growth strategies and find ways to meet the increased short-term demand for medical supplies

Why Attend - Evolving to MedDev 2022

2024-04-18
Evolving to MedDev provides a new opportunity for executives in aerospace, automotive and medical devices companies to connect and develop long-term growth strategies and find ways to meet the increased short-term demand for medical supplies

SAE International

2024-04-18
Evolving to MedDev provides a new opportunity for executives in aerospace, automotive and medical devices companies to connect and develop long-term growth strategies and find ways to meet the increased short-term demand for medical supplies
Event

Exhibit/Sponsor - Evolving to MedDev 2021

2024-04-18
Evolving to MedDev provides a new opportunity for executives in aerospace, automotive and medical devices companies to connect and develop long-term growth strategies and find ways to meet the increased short-term demand for medical supplies

Evolving to MedDev 2022

2024-04-18
Evolving to MedDev provides a new opportunity for executives in aerospace, automotive and medical devices companies to connect and develop long-term growth strategies and find ways to meet the increased short-term demand for medical supplies
Technical Paper

Investigation of Propagation of Viruses and Risk of Infection in Automobile Cabins

2024-04-09
2024-01-2579
The author has developed UV based photocatalytic air purification system (Mathur, 2021, 2122, 2023) that can eliminate all pathogens from the cabin air including COVID-19. In this study, the focus is to determine the risk of infection due to pathogens/germs in the cabin of an automobile. Author has determined the risk of infection by using Wells-Riley model and conducted CFD analysis to determine propagation of virus in cabin as a function of: 1 Cabin Volume & Number of Occupants (Wells-Riley Model in OSA mode): (i) Cabin volume from: Small Sedan, Large Sedan and a SUV; with 4 occupants (males & females); Number of infector 1; Air flowrate (m3/min); (ii) A 15-seater minibus – with 10 occupants (males); Number of infectors 1 & 2; Air flowrate (m3/min) 2 CFD to simulate 4 occupants and 1 infector in an automotive cabin – Current investigation is for talking, coughing and sneezing with blower off in Recirc mode wit (i) Infector in the front seat; (ii) Infector in the rear seat.
Technical Paper

Analysis of Fluid Evidence on Various Vehicle Components

2024-04-09
2024-01-2467
Determining occupant kinematics in a vehicle crash is essential when understanding injury mechanisms and assessing restraint performance. Identifying contact marks is key to the process. This study was conducted to assess the ability to photodocument the various fluids on different vehicle interior component types and colors with and without the use of ultraviolet (UV) lights. Biological (blood, saliva, sweat and skin), consumable and chemical fluids were applied to vehicle interior components, such as seatbelt webbing, seat and airbag fabrics, roof liner and leather steering wheel. The samples were photodocumented with natural light and UV light (365 nm) exposure immediately after surface application and again 14 days later. The review of the photos indicated that fabric type and color were important factors. The fluids deposits were better visualized on non-porous than porous materials. For example, blood was better documented on curtain airbags than side or driver airbags.
Technical Paper

What the Flicker Is Going on Here? Temporal Light Modulation in Automotive Lighting

2024-04-09
2024-01-2462
Temporal light modulation (TLM), colloquially known as “flicker,” is an issue in almost all lighting applications, due to widespread adoption of LED and OLED sources and their driving electronics. A subset of LED/OLED lighting systems delivers problematic TLM, often in specific types of residential, commercial, outdoor, and vehicular lighting. Dashboard displays, touchscreens, marker lights, taillights, daytime running lights (DRL), interior lighting, etc. frequently use pulse width modulation (PWM) circuits to achieve different luminances for different times of day and users’ visual adaptation levels. The resulting TLM waveforms and viewing conditions can result in distraction and disorientation, nausea, cognitive effects, and serious health consequences in some populations, occurring with or without the driver, passenger, or pedestrian consciously “seeing” the flicker.
Technical Paper

Developing dynamic driver head envelope for passenger cars considering real-time road conditions

2024-04-09
2024-01-2493
Ergonomics plays an important role in automobile design to achieve optimal compatibility between occupants and vehicle components. The overall goal is to ensure that the vehicle design accommodates the target customer group, who come in varied sizes, preferences and tastes. Headroom is one such metric that not only influences accommodation rate but also conveys a visual perception on how spacious the vehicle is. An adequate headroom is necessary for a good seating comfort and a relaxed driving experience. Headroom is intensely discussed in magazine tests and one of the key deciding factors in purchasing a car. SAE J1100 defines a set of measurements and standard procedures for motor vehicle dimensions. H61, W27, W35, H35 and W38 are some of the standard dimensions that relate to headroom and head clearances.
Technical Paper

Development of a Dynamic Nonlinear Finite Element Model of the Large Omnidirectional Child Crash Test Dummy

2024-04-09
2024-01-2509
The Large Omnidirectional Child (LODC) developed by the National Highway Traffic Safety Administration (NHTSA) has an improved biofidelity over the currently available Hybrid III 10-year-old (HIII-10C) Anthropomorphic Test Device (ATD). The LODC design incorporates enhancements to many body region subassemblies, including a redesigned HIII-10C head with pediatric mass properties, and the neck, which produces head lag with Z-axis rotation at the atlanto-occipital joint, replicating the observations made from human specimens. The LODC also features a flexible thoracic spine, a multi-point thoracic deflection measurement system, skeletal anthropometry that simulates a child's sitting posture, and an abdomen that can measure belt loading directly. This study presents the development and validation of a dynamic nonlinear finite element model of the complete LODC dummy. Based on the three-dimensional CAD model, Hypermesh was used to generate a mesh of the finite element (FE) LODC model.
Technical Paper

Biosignal-Based Driving Experience Analysis between Automated Mode and Manual Mode

2024-04-09
2024-01-2504
With the rapid development of intelligent driving technology, there has been a growing interest in the driving comfort of automated vehicles. As vehicles become more automated, the role of the driver shifts from actively engaging in driving tasks to that of a passenger. Consequently, the study of the passenger experience in automated driving vehicles has emerged as a significant research area. In order to examine the impact of automatic driving on passengers' riding experience in vehicle platooning scenarios, this study conducted real vehicle experiments involving six participants. The study assessed the subjective perception scores, eye movement, and electrocardiogram (ECG) signals of passengers seated in the front passenger seat under various vehicle speeds, distances, and driving modes. The results of the statistical analysis indicate that vehicle speed has the most substantial influence on passenger perception.
Technical Paper

Design, Analysis, and Comparative Study of Conventional Double Wishbone Control Arms with Modified Split Type Control Arms Design for a Passenger Car

2024-04-09
2024-01-2519
In today's automotive industry, the preference for suspension systems in high-end passenger vehicles is shifting away from conventional MacPherson or double wishbone setups and toward advanced double wishbones with split-type control arms or multi-link suspensions. This shift not only enhances the ride and handling experience but also introduces greater design complexities. This paper explains the design limitations of the conventional double wishbone front suspension (with 2 ball joints) and the opportunities presented by advanced double wishbone suspension designs, including split-type lower control arms (with 3 ball joints) and double split-type control arms (with 4 ball joints). Replacing either of the rigid links (upper/lower) of the conventional double wishbone suspension with a four-bar mechanism in the case of split-type control arm wishbone suspension significantly alters the behavior of the kingpin axis, leading to consequential effects on steering and suspension parameters.
Technical Paper

Comparison of the Responses of the Thorax and Pelvis of the GHBMC M50 -O Using Two Different Foam Materials in a High-Speed Rear Facing Frontal Impact Scenario

2024-04-09
2024-01-2647
Due to the lack of biofidelity seen in GHBMC M50-O in rear-facing impact simulations involving interaction with the seat back in an OEM seat, it is important to explore how the boundary conditions might be affecting the biofidelity and potentially formulate methods to improve biofidelity of different occupant models in the future while also maintaining seat validity. This study investigated the influence of one such boundary condition, which is the seat back foam material properties, on the thorax and pelvis kinematics and injury outcomes of the GHBMC 50th M50-O model in a high-speed rear-facing frontal impact scenario, which involves severe occupant loading of the seat back. Two different seat back foam materials were used – a stiff foam with high densification and a soft foam with low densification. The peak magnitudes of the T-spine resultant accelerations of the GHBMC M50-O increased with the use of soft foam as compared to stiff foam.
Journal Article

Assessing the Impact of Rubberized Asphalt on Reducing Hip Fracture Risk in Elderly Populations Using Human Body Models

2024-04-08
Abstract Compared to other age groups, older adults are at more significant risk of hip fracture when they fall. In addition to the higher risk of falls for the elderly, fear of falls can reduce this population’s outdoor activity. Various preventive solutions have been proposed to reduce the risk of hip fractures ranging from wearable hip protectors to indoor flooring systems. A previously developed rubberized asphalt mixture demonstrated the potential to reduce the risk of head injury. In the current study, the capability of the rubberized asphalt sample was evaluated for the risk of hip fracture for an average elderly male and an average elderly female. A previously developed human body model was positioned in a fall configuration that would give the highest impact forces toward regular asphalt.
X