Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Applied Vehicle Dynamics

2024-09-23
Take notes! Take the wheel! There is no better place to gain an appreciation for vehicle dynamics than from the driver’s seat. Spend three, intense days with a world-renowned vehicle dynamics engineer and SAE Master Instructor, his team of experienced industry engineers, and the BMW-trained professional driving instructors. They will guide you as you work your way through 12 classroom modules learning how and why vehicles go, stop and turn. Each classroom module is immediately followed by an engaging driving exercise on BMW’s private test track.
Training / Education

ADAS Application Automatic Emergency Braking

2024-09-19
Active safety and (ADAS) are now being introduced to the marketplace as they serve as key enablers for anticipated autonomous driving systems. Automatic emergency braking (AEB) is one ADAS application which is either in the marketplace presently or under development as nearly all automakers have pledged to offer this technology by the year 2022. This one-day course is designed to provide an overview of the typical ADAS AEB system from multiple perspectives.
Training / Education

AS13100 and RM13000 8D Problem Solving Requirements for Suppliers

2024-08-29
This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. AS13100 and RM13000 define the Problem-Solving standard for suppliers within the aero-engine sector, with the Eight Disciplines (8D) problem solving method the basis for this standard. This two-day course provides participants with a comprehensive and standardized set of tools to become an 8D practitioner. Successful application of 8D achieves robust corrective and preventive actions to reduce the risk of repeat occurrences and minimize the cost of poor quality.
Training / Education

AS9145 Requirements for Advanced Product Quality Planning and Production Part Approval

2024-07-08
This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. Production and continual improvement of safe and reliable products is key in the aviation, space, and defense industries. Customer and regulatory requirements must not only be met, but they are typically expected to exceeded requirements. Due to globalization, the supply chain of this industry has been expanded to countries which were not part of it in the past and has complicated the achievement of requirements compliance and customer satisfaction.
Training / Education

AS13100 and RM13004 Design and Process Failure Mode and Effects Analysis and Control Plans

2024-07-03
This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. In the Aerospace Industry there is a focus on Defect Prevention to ensure that quality goals are met. Failure Mode and Effects Analysis (PFMEA) and Control Plan activities are recognized as being one of the most effective, on the journey to Zero Defects. This two-day course is designed to explain the core tools of Design Failure Mode and Effects Analysis (DFMEA), Process Flow Diagrams, Process Failure Mode and Effects Analysis (PFMEA) and Control Plans as described in AS13100 and RM13004.
Technical Paper

Automated Park and Charge: Concept and Energy Demand Calculation

2024-07-02
2024-01-2988
In this paper we are presenting the concept of automated park and charge functions in different use scenarios. The main scenario is automated park and charge in production and the other use scenario is within automated valet parking in parking garages. The automated park and charge in production is developed within the scope of the publicly funded project E-Self. The central aim of the project is the development and integration of automated driving at the end-of-line in the production at Ford Motor Company's manufacturing plant in Cologne. The driving function thereby is mostly based upon automated valet driving with an infrastructure based perception and action planning. Especially for electric vehicles the state of charge of the battery is critical, since energy is needed for all testing and driving operations at end-of-line.
Technical Paper

Thermal Management System for Battery Electric Heavy-Duty Trucks

2024-07-02
2024-01-2971
On the path to decarbonizing road transport, electric commercial vehicles will play a significant role. The first applications were directed to the smaller trucks for distribution traffic with relatively moderate driving and range requirements, but meanwhile, the first generation of a complete portfolio of truck sizes is developed and available on the market. In these early applications, many compromises were accepted to overcome component availability, but meanwhile, the supply chain can address the specific needs of electric trucks. With that, the optimization towards higher usability and lower costs can be moved to the next level. Especially for long-haul trucks, efficiency is a driving factor for the total costs of ownership. Besides the propulsion system, all other systems must be optimized for higher efficiency. This includes thermal management since the thermal management components consume energy and have a direct impact on the driving range.
Technical Paper

Investigation of Stator Cooling Concepts of an Electric Machine for Maximization of Continuous Power

2024-07-02
2024-01-3014
With the automotive industry's increasing focus on electromobility and the growing share of electric cars, new challenges are arising for the development of electric motors. The requirements for torque and power of traction motors are constantly growing, while installation space, costs and weight are increasingly becoming limiting factors. Moreover, there is an inherent conflict in the design between power density and efficiency of an electric motor. Thus, a main focus in today's development lies on space-saving and yet effective and innovative cooling systems. This paper presents an approach for a multi-physical optimization that combines the domains of electromagnetics and thermodynamics. Based on a reference machine, this simulative study examins a total of nine different stator cooling concepts varying the cooling duct positions and end-winding cooling concepts.
Technical Paper

Software-supported Processes for Aerodynamic Homologation of Vehicles

2024-07-02
2024-01-3004
Homologation is an important process in vehicle development and aerodynamics a main data contributor. The process is heavily interconnected: Production planning defines the available assemblies. Construction defines their parts and features. Sales defines the assemblies offered in different markets, where Legislation defines the rules applicable to homologation. Control engineers define the behavior of active, aerodynamically relevant components. Wind tunnels are the main test tool for the homologation, accompanied by surface-area measurement systems. Mechanics support these test operations. The prototype management provides test vehicles, while parts come from various production and prototyping sources and are stored and commissioned by logistics. Several phases of this complex process share the same context: Production timelines for assemblies and parts for each chassis-engine package define which drag coefficients or drag coefficient contributions shall be determined.
Technical Paper

Traceability E-Fuels 2035

2024-07-02
2024-01-3022
EU legislation provides for only local CO2 emission-free vehicles to be allowed in individual passenger transport by 2035. In addition, the directive provides for fuels from renewable sources, i.e. defossilised fuels. This development leads to three possible energy sources or forms of energy for use in individual transport. The first possibility is charging with electricity generated from renewable sources, the second possibility is hydrogen generated from renewable sources or blue production path. The third possibility is the use of renewable fuels, also called e-fuels. These fuels are produced from atmospheric CO2 and renewable hydrogen. Possible processes for this are, for example, methanol or Fischer-Tropsch synthesis. The production of these fuels is very energy-intensive and large amounts of renewable electricity are needed.
Training / Education

AS13100 RM13010 Human Factors for Aviation

2024-06-19
The aerospace industry is focused on fostering a positive safety culture and competency in Human Factors considerations supports competencies crucial to an organization's quality management and safety. Many standards include requirements for embedding Human Factors within the aerospace manufacturing and supply chains. This course introduces the skills and knowledge supporting compliance and capability in human performance. This course provides an overview of Human Factors management in aviation and clarifies what individuals and companies can do to optimize the effects of Human Factors within their organization.
Technical Paper

Aerodynamics' Influence on Performance in Human-Powered Vehicles for Sustainable Transportation

2024-06-12
2024-37-0028
The issue of greenhouse gas (GHG) emissions from the transportation sector is widely acknowledged. Recent years have witnessed a push towards the electrification of cars, with many considering it the optimal solution to address this problem. However, the substantial battery packs utilized in electric vehicles contribute to a considerable embedded ecological footprint. Research has highlighted that, depending on the vehicle's size, tens or even hundreds of thousands of kilometers are required to offset this environmental burden. Human-powered vehicles (HPVs), thanks to their smaller size, are inherently much cleaner means of transportation, yet their limited speed impedes widespread adoption for mid-range and long-range trips, favoring cars, especially in rural areas. This paper addresses the challenge of HPV speed, limited by their low input power and non-optimal distribution of the resistive forces.
Technical Paper

Simulation and test methods on NVH performance of axle system

2024-06-12
2024-01-2950
For electric vehicles, road noise, together with wind noise, is the most important contributor for vehicle interior noise. Road noise is very dependent on the NVH behavior of axle system including wheels and tires. Axle system is part of vehicle platform which should be compatible with different body variants. Therefore, il is important to characterize the NVH performance of an axle system independently of car body structure, so that the design the axle can be optimized at the early stage according to the global requirements of all the related vehicles. The best way to characterize the NVH performance of an axle system is to measure the blocked forces on an appropriate test rig. However, the measurement of blocked forces from an axle system requires very stiff boundary conditions which is difficult to achieve in practice. For axles with rigid mountings, it is nearly impossible to measure the blocked forces on test rig.
Technical Paper

Frequency Response Analysis of Fully Trimmed Models using Compressed Reduced Impedance Matrix Methodology

2024-06-12
2024-01-2947
As vibration and noise regulations become more stringent, numerical models need to incorporate more detailed damping treatments. Commercial frameworks, such as Nastran and Actran, allow the representation of trim components as frequency-dependent reduced impedance matrices (RIM) in frequency response analysis of fully trimmed models. The RIM is versatile enough to couple the trims to modal-based or physical components. If physical, the trim components are reduced on the physical coupling degrees of freedom (DOFs) for each connected interface. If modal, the RIMs are projected on the eigenmodes of the connected component. While a model size reduction is achieved compared to the original model, most numerical models possess an extensive number of interfaces DOFs, either modal or physical, leading to large dense RIM which triggers substantial memory and disk storage.
Technical Paper

Metrics based design of electromechanical coupled reduced order model of an electric powertrain for NVH assessment

2024-06-12
2024-01-2913
Electric vehicles offer cleaner transportation with lower emissions, thus their increased popularity. Although, electric powertrains contribute to quieter vehicles, the shift from internal combustion engines to electric powertrains presents new Noise, Vibration, and Harshness challenges. Unlike traditional engines, electric powertrains produce distinctive tonal noise, notably from motor whistles and gear whine. These tonal components have frequency content, sometimes above 10 kHz. Furthermore, the housing of the powertrain is the interface between the excitation from the driveline via the bearings and the radiated noise (NVH). Acoustic features of the radiated noise can be predicted by utilising the transmitted forces from the bearings. Due to tonal components at higher frequencies and dense modal content, full flexible multibody dynamics simulations are computationally expensive.
Technical Paper

Advanced squeak and rattle noise prediction for vehicle interior development – numerical simulation and experimental validation

2024-06-12
2024-01-2925
Squeak and rattle (SAR) noise audible inside a passenger car causes the product quality perceived by the customer to deteriorate. The consequences are high warranty costs and a loss in brand reputation for the vehicle manufacturer in the long run. Therefore, SAR noise must be prevented. This research shows the application and experimental validation of a novel method to predict SAR noise on an actual vehicle interior component. The novel method is based on non-linear theories in the frequency domain. It uses the harmonic balance method in combination with the alternating frequency/time domain method to solve the governing dynamic equations. The simulation approach is part of a process for SAR noise prediction in vehicle interior development presented herein. In the first step, a state-of-the-art linear frequency-domain simulation estimates an empirical risk index for SAR noise emission. Critical spots prone to SAR noise generation are located and ranked.
Technical Paper

Estimating a Viscous Damping Model for a Vibrating Panel in contact with an Acoustic Trim Enhanced with Particle Dampers.

2024-06-12
2024-01-2917
Dampers (PDs) are passive devices employed in vibration and noise control applications. They consist of a cavity filled with particles that, when fixed to a vibrating structure, dissipate vibrational energy through friction and collisions among the particles. These devices have been extensively documented in the literature and find widespread use in reducing vibrations in structural machinery components subjected to significant dynamic loads during operation. However, their application in reducing vehicle interior sound has received, up to now, relatively little attention. Previous work by the authors has proven the effectiveness of particle dampers in mitigating vibrations in vehicle body panels, achieving a notable reduction in structure-borne noise within the vehicle cabin with an additional weight comparable to or even lower than that of bituminous damping treatments traditionally used for this purpose.
Technical Paper

The irrotational intensity: an efficient tool to understand the vibration energy propagation in complex structures using an FE Model.

2024-06-12
2024-01-2942
Although structural intensity was introduced in the 80's, this concept never found practical applications, neither for numerical nor experimental approaches. Quickly, it has been pointed out that only the irrotational component of the intensity offers an easy interpretation of the dynamic behavior of structures by visualizing the vibration energy flow. This is especially valuable at mid and high frequency where the structure response understanding can be challenging. A new methodolodgy is proposed in order to extract this irrotational intensity field from the Finite Element Model of assembled structures such as Bodies In White. This methodology is hybrid in the sense that it employs two distinct solvers: a dynamic solver to compute the structural dynamic response and a thermal solver to address a diffusion equation analogous to the thermal conduction built from the previous dynamic response.
Technical Paper

Development of a Hybrid-Electric Medium-HD Demonstrator Vehicle with a Pent-Roof SI Natural Gas Engine

2024-06-12
2024-37-0026
In response to global climate change, there is a widespread push to reduce carbon emissions in the transportation sector. For the difficult to decarbonize heavy-duty (HD) vehicle sector, lower carbon intensity fuels can offer a low-cost, near-term solution for CO2 reduction. The use of natural gas can provide such an alternative for HD vehicles while the increasing availability of renewable natural gas affords the opportunity for much deeper reductions in net-CO2 emissions. With this in consideration, the US National Renewable Energy Laboratory launched the Natural Gas Vehicle Research and Development Project to stimulate advancements in technology and availability of natural gas vehicles. As part of this program, Southwest Research Institute developed a hybrid-electric medium-HD vehicle (class 6) to demonstrate a substantial CO2 reduction over the baseline diesel vehicle and ultra-low NOx emissions.
Technical Paper

High-Speed Acoustic Imaging for the Localisation of Impulse-like Sound Emissions from Automotive Components

2024-06-12
2024-01-2959
Design verification and quality control of automotive components require the analysis of the source location of ultra-short sound events, for instance the engaging event of an electromechanical clutch or the clicking noise of the aluminium frame of a passenger car seat under vibration. State-of-the-art acoustic cameras allow for a frame rate of about 100 acoustic images per second. Considering that most of the sound events introduced above can be far less than 10ms, an acoustic image generated at this rate resembles an hard-to-interpret overlay of multiple sources on the structure under test along with reflections from the surrounding test environment. This contribution introduces a novel method for visualizing impulse-like sound emissions from automotive components at 10x the frame rate of traditional acoustic cameras.
X