Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The irrotational intensity: an efficient tool to understand the vibration energy propagation in complex structures using an FE Model.

2024-06-12
2024-01-2942
Although structural intensity was introduced in the 80's, this concept never found practical applications, neither for numerical nor experimental approaches. Quickly, it has been pointed out that only the irrotational component of the intensity offers an easy interpretation of the dynamic behavior of structures by visualizing the vibration energy flow. This is especially valuable at mid and high frequency where the structure response understanding can be challenging. A new methodolodgy is proposed in order to extract this irrotational intensity field from the Finite Element Model of assembled structures such as Bodies In White. This methodology is hybrid in the sense that it employs two distinct solvers: a dynamic solver to compute the structural dynamic response and a thermal solver to address a diffusion equation analogous to the thermal conduction built from the previous dynamic response.
Technical Paper

FE Modelling and Experimental Evaluation for the Surface Integrity of Thin Walled Aluminum Alloy

2024-06-01
2024-26-0429
Abstract: The present study discusses about the effect of installation torque on the surface and subsurface deformations for thin walled 7075 aluminum alloy used in Aerospace applications. A FE model was constructed to predict the effect of torque induced stresses on thin walled geometry followed with an experimentation. A detailed surface analysis was performed on 7075 aluminum in terms of superficial discontinuities, residual stresses, and grain deformations. The localized strain hardening resulting from increased dislocation density and its effect on surface microhardness was further studied using EBSD and micro indentation. The predicted surface level plastic strain of .25% was further validated with grain deformations measured using optical and scanning electron microscopy.
Standard

Aluminum Alloy, Extruded Profiles (2395-T84), 3.95Cu - 1.15Li - 0.3Ag - 0.5Mg - 0.1Zr, Solution Heat Treated, Stress Relieved by Stretching, and Aged

2024-04-25
CURRENT
AMS4359A
This specification covers an aluminum alloy in the form of extruded rods, bars, and profiles (shapes) 0.040 to 1.500 inches (1.02 to 38.10 mm), inclusive, in thickness, and produced with maximum cross-sectional area of 23.25 square inches (15000 mm2) and a maximum circumscribing circle diameter (circle size) of 15.5 inches (394 mm) (see 2.4.1 and 8.6).
Standard

Titanium Alloy Bars, Forgings, and Flash-Welded Rings, 5Al - 2.5V - 4Sn - 1Co - 0.8Fe Annealed

2024-04-25
CURRENT
AMS6903
This specification covers a titanium alloy in the form of bars, forgings, and flash-welded rings up through 12.000 inches (304.80 mm), inclusive, in diameter or least distance between parallel sides, and stock of any size for forging or flash-welded rings. Bars, forgings, and flash-welded rings with a nominal thickness of 3.000 inches (79.20 mm) or greater shall have a maximum cross-sectional area of 113 square inches (729 cm2) (see 8.5).
Standard

Titanium Alloy Bars, Forgings and Forging Stock, 6.0Al - 6.0V - 2.0Sn, Solution Heat Treated and Aged

2024-04-25
CURRENT
AMS6935D
This specification covers a titanium alloy in the form of bars up through 4.000 inches (101.60 mm) in nominal diameter or least distance between parallel sides, inclusive, forgings of thickness up through 4.000 inches (101.60 mm), inclusive, with bars and forgings having a maximum cross-sectional area of 32 square inches (204.46 cm2), and stock for forging of any size (see 8.6).
Standard

Rings, Retaining – Spiral Wound, Uniform Section Corrosion and Heat Resistant, UNS S66286

2024-04-10
CURRENT
AS4299B
This procurement specification covers retaining rings of the spiral wound type with uniform rectangular cross-section, made of a corrosion and heat resistant age hardenable iron base alloy of the type identified under the Unified Numbering System as UNS S66286, work strengthened and heat treated to a tensile strength of 185 to 240 ksi at room temperature.
X