Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Analysis of a Coupling System of Aircraft Environmental Control and Fuel Tank Inerting Based on Membrane Separation

2019-09-16
2019-01-1895
This paper raises a coupling system of aircraft environmental control and fuel tank inerting based on membrane separation. The system applies a membrane dehumidifier to replace water vapor removal unit of heat regenerator, condenser and water separator, which is widely used in conventional aircraft environmental control system nowadays. Water vapor can travel across the membrane wall under its pressure difference without phase change, so the dehumidification process consumes no cooling capacity and the cooling capacity of the system increases. This paper first compares the thermodynamic properties of environmental control system based on membrane dehumidification and the environmental control system based on condensation. The results show that the membrane dehumidification system has bigger cooling capacity and lighter weight.
Technical Paper

Compensating the Effects of Ice Crystal Icing on the Engine Performance by Control Methods

2019-09-16
2019-01-1862
Aircraft equipment is operated in a wide range of external conditions, which, with a certain combination of environmental parameters, can lead to icing of the engine internal elements. Due to icing, the engine components performance change what leads to decrease in thrust, gas dynamic stability, durability, etc. Safe aircraft operation and its desired performance may be lost as a result of such external influence. Therefore, it is relevant to study the possibilities of reducing the icing effect with the help of a special engine control. The focus of this paper is to determine control methods of an aircraft gas turbine engine addressing this problem. The object of the study is a modern commercial turbofan with a bypass ratio of about 9. In this paper analysis of the effect of ice crystal icing on the engine components performance is conducted.
Technical Paper

CFD modeling and validation of the ECN Spray G experiment under a wide range of operating conditions

2019-08-15
2019-24-0130
The increasing diffusion of gasoline direct injection (GDI) engines requires a more detailed and reliable description of the phenomena occurring during the fuel injection process. Currently, one drawback of GDI engines is represented by the impingement on the piston wall, due to typically adopted hollow-cone fuel sprays, which can lead to high emissions of unburned hydrocarbons and soot formation. Within this context, the extensive validation of multi-dimensional models by means of experimental data represents a fundamental task to accurately predict the physical phenomena characterizing the injected spray. The aim of this work was to simulate with OpenFOAM different operating conditions of the 8-hole, ECN Spray G injector placed into a constant volume vessel. The resulting developments of the jet plumes were assessed, along with the physical effects of injection pressure and wall temperature on the wall impingement phenomenon.
Technical Paper

Pressure drop of particulate filters and correlation with the deposited soot for heavy-duty engines

2019-08-15
2019-24-0151
Particulate filters are a widely used emission control device on heavy-duty diesel engines. The accumulation of particulate matter, mostly consisting of soot, inside the filter results in increased filter pressure-drop (backpressure). This increased backpressure has been used by the on-board control systems as trigger for regeneration procedures, which aim to actively oxidize the accumulated soot. However, it is known that passive soot oxidation during normal operation affects the correlation between backpressure and the deposited soot mass in filter. Therefore, the backpressure alone cannot be a reliable trigger for regeneration. In this work we highlight operating conditions with very poor correlation between backpressure and accumulated soot mass in filter and evaluate the possible root causes. Experiments with several heavy-duty diesel engines and particulate filters were conducted on engine test bench.
Technical Paper

Development and Validation of a Control-Oriented Analytic Engine Simulator

2019-08-15
2019-24-0002
Due to the recent anti-pollution policies, the performance increase in Spark Ignition (SI) engines is currently under the focus of automotive manufacturers. This trend drives the control systems designers to investigate accurate solutions and build more sophisticated algorithms to increase the efficiency of this kind of engines. The development of a control strategy is composed by several phases and steps, and the first part of such process is typically spent to define and validate the logic of the strategy. During this phase a light engine simulator is particularly useful, since it allows producing robust combustion synthetic data with a low calibration and computational effort. In the first part of this paper the description of a control-oriented analytic engine simulator (ANESIM) is carried out.
Technical Paper

Experimental measurement of roughness data and evaluation of Greenwood/Tripp parameters for the elastohydrodynamic analysis of a conrod small-end/piston pin coupling.

2019-08-15
2019-24-0081
For the investigation of the tribological behavior of lubricated contacts, the choice and the calibration of the adopted asperity contact model is fundamental, in order to properly mimic the mixed lubrication conditions. The Grennwood/Tripp model is extensively adopted by the commercial software commonly employed to simulate lubricated contacts. This model, based on a statistic evaluation of the number of asperities in contact and on the Hertzian contact theory, has the advantage of introducing a simple relationship between oil film thickness and asperity contact pressure, considerably reducing the simulation time. However, in order to calibrate the model, some non-standard roughness parameters are required, that are not available from commercial roughness measuring equipment. Standard values, based on some limited experiences, are typically used, and a limited literature can be found focusing on how to evaluate them, thus reducing the predictivity of the model.
Technical Paper

Experimental Validation of a Model-based Water Injection Combustion Control System for On-board Application

2019-08-15
2019-24-0015
Water Injection (WI) has become a key technology for increasing combustion efficiency in modern GDI turbocharged engines. In fact, the addition of water mitigates significantly the occurrence of knock, reduces exhaust gas temperatures, and opens the possibility to reach optimum heat release phasing even at high load. This work presents the latest development of a model-based WI controller, and its experimental validation on a GDI TC engine. The controller is based on a novel approach that involves an analytic combustion model to define the SA required to reach a combustion phase target, considering injected water mass effects. The model has been expanded to directly consider air-to-fuel ratio variation effects on combustion phasing, and the same controller structure could integrate other variables that influence 50 percent of Mass Fraction Burned angular position (MFB50), such as EGR.
Technical Paper

An embedded simulation approach for tolerance analysis on vehicle propulsion subsystem

2019-08-15
2019-24-0079
An increasing demand for reducing cost and time effort of the design process via improved CAE (Computer-Aided Engineer) tools and methods has characterized the automotive industry over the past two decades. One of the main challenge regarded the effective simulation of a vehicle’s propulsion system dealing with different physical domains: several examples have been proposed in literature mainly based on co-simulation approach which involves a specific tool for each propulsion system part modeling. Nevertheless, these solutions are not fully suitable and effective to perform statistical analysis including all physical parameters. In this respect, this paper presents the definition and implementation of a new simulation methodology applied to a propulsion subsystem.
Technical Paper

Cylinder Pressure Based Method for In-Cycle Pilot Misfire Detection

2019-08-15
2019-24-0017
For the reduction of emissions and combustion noise in a internal combustion Diesel engine, multiple injections are normally used. A pilot injection reduces the ignition delay of the main injection and hence the combustion noise. However, normal variations of the operating conditions, component tolerances and aging may result in the lack of combustion (misfire) or even the lack of injection (miss-injection) for short on-times. The result is a lower indicated thermal efficiency, higher emissions and louder combustion noise. Closed-loop combustion control techniques aim to monitor in real-time these variations and act accordingly to counteract their effect. To ensure the in-cycle controllability of the main injection, the misfire diagnosis must be performed before the start of the main injection. This paper focuses on the development and evaluation of in-cycle algorithms for the pilot misfire detection.
Training / Education

Robust Design

2019-07-15
Engineers are taught to create designs that meet customer specifications. When creating these designs, the focus is usually on the nominal values rather than variation. Robustness refers to creating designs that are insensitive to variability in the inputs. Much of the literature on robustness is dedicated to experimental techniques, particularly Taguchi techniques, which advocate using experiments with replications to estimate variation. This course presents mathematical formulas based on derivatives to determine system variation based on input variation and knowledge of the engineering function.
Standard

Vision Glossary

2019-06-20
WIP
J264
The function of uniform terminology is to promote understandable and exact communication in the area of vision. A great deal of effort has been expended to make these definitions suit this purpose. It is recognized that this terminology, like other dictionaries, must be revised periodically to reflect current usage and changing needs. The Driver Vision Subcommittee of the Human Factors Engineering Committee, therefore, solicits suggestions for improvements and additions to be considered in future revisions.
Technical Paper

Experimental Study and Analysis of Ice Crystal Accretion on a Gas Turbine Compressor Stator Vane

2019-06-10
2019-01-1927
A significant number of historical engine powerloss events have recently been attributed to ingestion of high altitude ice crystals, prompting regulators to expand engine certification envelopes to incorporate ‘ice crystal icing’ conditions. There has been a resulting effort by OEMs and academia to develop analytical and semi-empirical models for the phenomenon, partly through use of rig testing. The current study presents results and analysis of experiments conducted in the National Research Council’s Research Altitude Test Facility (RATFac). The experiments used a simplified compressor stator vane test article, designed to produce data to build semi-empirical models and validate an existing ice crystal icing code. Accretion growth rates, extracted from backlit shadowgraphy, are presented as a function of test condition, and the algorithm of a new image processing technique using Canny filtering is discussed.
Technical Paper

A Refined In-Flight Icing Model and its Numerical Implementation

2019-06-10
2019-01-1937
A refined in-flight icing model is proposed whose primary focus lies on an improved prediction of the runback dynamics. The most significant capabilities/properties of the model are: Incorporation of surface tension and wetting effects in the runback model Fully transient treatment of the ice accretion/depletion process and the runback flow Treatment of unsteady heat transfer in the runback layer, the accreted ice layer and the underlying substrate as well as phase transitions solid/liquid in the ice layer Strict mass- and enthalpy-conservative growth/depletion of the ice layer (this is achieved by a specially designed mesh deformation algorithm) An essential part of the paper is devoted to the treatment of surface tension and wetting effects: These effects result from disjoining pressure contributions to the pressure terms in the runback continuity equation, i.e., these effects are inherent properties of the simulated runback dynamics.
Technical Paper

NRC Particle Detection Probe: Results and Analysis from Ground and Flight Tests

2019-06-10
2019-01-1933
High altitude ice crystals are causing in-service events in excess of one per month for commercial aircraft. The effects include air data probes malfunctioning (pitot pressure and total air temperature in particular), and uncommanded engine power loss or flameout events. The National Research Council Canada (NRC) has developed a particle detection probe (PDP) that mounts on the fuselage of aircraft to sense and quantify the ice crystals in the environment. The probe is low-power and non-intrusive. This paper presents the results of ground and flight testing of this probe. Results are presented for ground testing in a sea level ice crystal wind tunnel and an altitude icing tunnel capable of generating both ice crystal and super-cooled liquid. The PDP was operated on several flight campaigns and the results of two will be presented.
Technical Paper

Development of a Hailstone Substitute for Representative Impact Tests

2019-06-10
2019-01-1942
The present work started with the analysis of real hailstones collected during a storm in France. The microstructure of real hailstone was studied in order to highlight its composition and crystallographic orientations. It helped understanding the formation and the growing mechanisms of hail in the atmosphere. Its impact behaviour was then studied through two different impact experiments: ballistic impacts on rigid target and on deformable targets. It was then compared with the impact response of standard reference ices (manufactured following ASTM standard and with standard freezing) on the same impact setup. From these observations several ices (with different microstructures) were developed and also tested, in order to select the best candidate to simulated the real hailstone. The behaviour of these ices was also studied with quasi-static tension and compression test, and dynamic compression test on Split Hopkinson bar apparatus.
Technical Paper

Two-Way Flow Coupling in Ice Crystal Icing Simulation

2019-06-10
2019-01-1966
Numerous turbofan power-loss events have occurred in high altitude locations in the presence of ice crystals. It is theorized that ice crystals enter the engine core, partially melt in the compressor and then accrete onto stator blade surfaces. This may lead to engine rollback, or shed induced blade damage, surge and/or flameout. The first generation of ice crystal icing predictive models use a single flow field where there is no accretion to calculate particle trajectories and accretion growth rates. Recent work completed at the University of Oxford has created an algorithm to automatically detect the edge of accretion from experimental video data. Using these accretion profiles, numerical simulations were carried out at discrete points in time using a manual meshing process.
Technical Paper

ICICLE: A Model for Glaciated & Mixed Phase Icing for Application to Aircraft Engines

2019-06-10
2019-01-1969
High altitude ice crystals can pose a threat to aircraft engine compression and combustion systems. Cases of engine damage, surge and rollback have been recorded in recent years, believed due to ice crystals partially melting and accreting on static surfaces (stators, endwalls and ducting). The increased awareness and understanding of this phenomenon has resulted in the extension of icing certification requirements to include glaciated and mixed phase conditions. Developing semi-empirical models is a cost effective way of enabling certification, and providing simple design rules for next generation engines. A comprehensive ice crystal icing model is presented in this paper, the Ice Crystal Icing ComputationaL Environment (ICICLE). It is modular in design, comprising a baseline code consisting of an axisymmetric or 2D planar flowfield solution, Lagrangian particle tracking, air-particle heat transfer and phase change, and surface interactions (bouncing, fragmentation, sticking).
Technical Paper

Photogrammetric Frost Roughness Measurements in Cold-Soaked Conditions

2019-06-10
2019-01-1970
Cold-soaked fuel frost (CSFF) is a form of aircraft wing contamination that occurs when a vehicle caries sufficient fuel for multiple trips or take-offs and landings. Following the first trip, which may reach altitudes above 10,000 m (33,000 ft), the fuel for the subsequent trips is carried in the wing tanks and may reach temperatures below -25 °C. In certain times of the year at some airports, temperatures and humidity levels will form CSFF on the aircraft wing surfaces over the fuel tanks. Unless an exemption is granted for the specific aircraft model, aircraft are not allowed to takeoff if the wing surfaces are contaminated by frost. Because aircraft operators desire to minimize vehicle time spent at airports, aircraft manufacturers are expected to pursue designs that safely operate with CSFF at takeoff and to pursue certification exemptions for aircraft models enabling CSFF takeoffs.
Technical Paper

Aero-Engine Inlet Vane Structure Optimization for Anti-Icing with Hot Air Film Using Neural Network and Genetic Algorithm

2019-06-10
2019-01-2021
An improved anti-icing design with film heating ejection slot and cover for the inlet part of aero-engine was brought out, which combines the interior jet impingement with the exterior hot air film heating and shows promising application for those parts manufactured with composite materials. A hybrid method based on the combination of the Back Propagation Neural Network (BPNN) and Genetic Algorithm (GA) is developed to optimize the anti-icing design for a typical aero-engine inlet vane in two dimensions. The optimization aims to maximize the heating performance of the hot air film, which is assessed by the heating effectiveness. The film-heating ejection angle and the cover opening angle are the two geometric variables to be optimized. Numerical model was established and validated to generate training and testing samples for BPNN, which was used to predict the objective function and find the optimal design variables in conjunction with the GA.
X