Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

FEA Beyond Basics Thermal Analysis

2019-12-16
Finite Element Analysis (FEA) is a powerful and well recognized tool used in the analysis of heat transfer problems. However, FEA can only analyze solid bodies and, by necessity thermal analysis with FEA is limited to conductive heat transfer. The other two types of heat transfer: convection and radiation must by approximated by boundary conditions. Modeling all three mechanisms of heat transfer without arbitrary assumption requires a combined use of FEA and Computational Fluid Dynamics (CFD).
Training / Education

Vibration Analysis Using Finite Element Analysis (FEA)

2019-12-02
Finite Element Analysis (FEA) has been used by engineers as a design tool in new product development since the early 1990's. Until recently, most FEA applications have been limited to static analysis due to the cost and complexity of advanced types of analyses. Progress in the commercial FEA software and in computing hardware has now made it practical to use advanced types as an everyday design tool of design engineers. In addition, competitive pressures and quality requirements demand a more in-depth understanding of product behavior under real life loading conditions.
Technical Paper

Machine Learning considerations in the context of Automotive Functional Safety Requirements for Autonomous Vehicles

2019-11-21
2019-28-2519
We are currently in the age of developing Autonomous Vehicles (AV). Never before in history, the environment has been as conducive as today for these developments to come together to deliver a mass produced autonomous car for use by general public on the roads. Several enhancements in hardware, software, standards and even business models are paving the way for rapid development of AVs, bringing them closer to production reality. Safety is an indispensable consideration when it comes to transportation products, and ground vehicle development is no different. We have several established standards. When it comes to Autonomous Vehicle development, an important consideration is ISO 26262 for, Automotive Functional Safety. Going from generic frameworks such as Failure Mode and Effects Analyses (FMEA) and Hazard and operability study (HAZOP) to Functional Safety, Safety of Intended Functionality, and Automotive Safety Integrity Levels specific is a natural progression.
Technical Paper

LIGHT WEIGHTING OF ADDITIVE MANUFACTURED PARTS FOR AUTOMOTIVE PRODUCTION APPLICATIONS THROUGH TOPOLOGY OPTIMIZATION TECHNIQUES

2019-11-21
2019-28-2544
Rapidly enhancing engineering techniques to manufacture components in quick turnaround time have gained importance in recent time. Manufacturing strategies like Additive Manufacturing (AM) are a key enabler for achieving them. Unlike traditional manufacturing techniques such as injection molding, casting etc., AM unites advanced materials, machines, and software which will be critical for Industry 4.0. Successful application of AM involves a specific combination and understanding of these three key elements. In this paper the AM approach used is Fused Deposition Modelling (FDM). Since material costs contribute to 60% of the overall FDM costs, it becomes a necessity to optimize the material consumption of the produced parts. This paper reports case studies of 3D printed parts used in an Automobile plant’s production aids, which utilize computational methods(CAE), topology optimization and FDM constrains (build directions) to manufacture the part in the most optimal way.
Technical Paper

Photo oxidation analysis method for automotive coating weathering performance evaluation

2019-11-21
2019-28-2555
RESEARCH OBJECTIVE Accelerated artificial weathering performance has been always observed as critical and most important factor for durability prediction of colour and resin for a coating system. Photo oxidation of resin is the phenomenon behind coating’s ageing. Though accelerated weathering tests protocols are widely used in industry, they are very costly and still very time consuming. One automotive grade accelerated testing can go as long as 8 months duration. METHODOLOGY (maximum 150 words) Photo oxidation value (POV) is proportionate to the degradation of the resin material used in coating. During the accelerated weathering POV is measured for the coating at stipulated interval during initial phase and trend is plotted for deterioration verses weathering test duration. POV can be analysed with the help of FTIR analysis to observe bond absorption energy and bond separation energy in the resin system. This trend can be extrapolated to predict the weathering performance of coating.
Technical Paper

Enhancement of safety features of steering wheel using experimentally validated finite element model

2019-11-21
2019-28-2556
Automotive safety is the primary concern in the current world. In order to develop safe and crashworthy vehicles, phenomena behind the energy absorption characteristics of every automotive component must be known. Steering wheel is one of the key players which could cause severe injuries to the driver if sufficient safety measures are not considered. This research focuses on the crash performance of commercial vehicle steering as per head form and body block test prescribed in ECE R12. Detailed FE (Finite Element) model of the steering wheel including armature, horn pad was developed using nonlinear material properties. The model was first validated using the test results. Comparisons between experimental results and finite element analysis results were conducted and correlated using load versus displacement profiles over the duration of impact. A good relationship between test and FE results was found which allows for investigation into the energy analysis of the steering components.
Technical Paper

STATISTICAL ANALYSIS OF LOW CYCLE FATIGUE PROPERTIES IN METALS FOR ROBUST DESIGN

2019-11-21
2019-28-2576
Objective: In ground vehicle industry, strain life approach is commonly used for predicting fatigue life. This approach requires use of fatigue material properties such as fatigue strength coefficient (σf'), fatigue strength exponent (b), fatigue ductility coefficient (εf'), fatigue ductility exponent (c), cyclic strength coefficient (K′) and cyclic strain hardening exponent (n′). These properties are obtained from stable hysteresis loop of constant amplitude strain-controlled uniaxial fatigue tests. Usually fatigue material properties represent 50th percentile experimental data and doesn't account possible material variation in the fatigue life calculation. However, for robust design of vehicle components, variation in material properties need to be taken into account. In this paper, methodology to develop 5th percentile (B5), 10th percentile (B10) and 20th percentile (B20) fatigue material properties are discussed.
Technical Paper

Determine Thermal Fatigue Requirements for PEPS Antenna Copper Wire over Vehicle Lifetime with defined Reliability Requirements.

2019-11-21
2019-28-2582
Reliability states the degree to which the result of a measurement, calculation, or specification can be depended on to be accurate. And, tests according to GMW specifications represents a minimum of 15 years of vehicle life time with defined Reliability and Confidence level. In this work, actual number of thermal cycles for Thermal Fatigue tests (Thermal Shock and Power Temperature Cycle) are calculated for Copper Wire whose Coffin Manson exponent is 5. Overstressing the PEPS Antenna under thermal fatigue requirement (defined number of thermal cycles based on Reliability and Confidence requirements) will lead to broken Copper wire which will result in component’s functional failure and thus impossible to continue reliability testing. The objective of this paper is to determine thermal fatigue requirements for Antenna’s Copper wire whose Coffin Manson exponent is 5.
Technical Paper

Accelerated structural durability testing of backhoe loader by creation of duty cycle from field data to predict failure modes.

2019-11-21
2019-28-2583
These days backhoe loader have become main part of construction equipment vehicles. The main function of backhoe is to dig ditches to lay pipes and underground cable, set up foundations for buildings and create drainage systems. During these operations, many failures are observed in backhoe loader structure/parts. With the help of Accelerated structural durability testing, life of backhoe loader & its part can be estimated; through which we can understand different failure modes. The real time data was collected during various operations which includes pit digging, duck walk, ditch climbing, levelling, dozing, piling, truck loading etc. We have used software based approach to process the strain, displacement and other data collected during real time operation to create the duty cycle. The same duty cycle was simulated in the lab condition using servo hydraulic actuators.
Technical Paper

Digital Twins for Prognostic Profiling

2019-11-21
2019-28-2456
Digital Twins for Prognostic Profiling Authors: Sreeram Mohan*, Painuri Thukaram**, Panduranga Rao*** Objective / Question: Ability to have least failures in products on the field with minimum effort from the manufacturers is a major area of focus driven by Industry 4.0 initiatives. Amidst traditional methods of performing system / subsystem level tests often does not enable the complete coverage of a machine health performance predictions. This paper highlights a workable workflow that could be used as a template while considering system design especially employing Digital Twins that help in mimicking real-life scenarios early in the design cycle to increase product’s reliability as well as tend to near zero defects. Methodology: With currently available disruptive technologies , systems are integrated multi-domain 'mechatronics' systems operating in closed-loop/close-interaction.
Technical Paper

Non-linear dynamic Modeling, Simulation and Control of Five-Phase 10/8 Switched Reluctance Motor for Electric Vehicle Application

2019-11-21
2019-28-2473
The SRM is gaining much interest for EVs due to its rare-earth-free characteristic and excellent performance. SRM possess several advantages such as low cost, high efficiency, high power density, fault-tolerant and it can produce extended constant power region, and this makes SRM as viable alternative over conventional PM drives. Objective: The objective of this paper is to establish proof of theoretical concepts related to SRM. The key to achieve an effective SRM modeling is to use a methodology that allow the nonlinearity of its magnetic characteristics to be represented while maximizing the simulation speed. This paper represents how magnetization data obtained from FEA in the form of look up tables is most appropriate way to represent SRM model. In this paper, performance analysis of SRM is done with the help of Open loop and Closed loop MATLAB simulations. These dynamic simulations of SRM will assist in understanding behavior of SRM in various loading and speed conditions.
Technical Paper

Development of a Graphical User Interface (GUI) Based Tool for Vehicle Dynamics Evaluation

2019-11-21
2019-28-2397
Title Development of a Graphical User Interface (GUI) Based Tool for Vehicle Dynamics Evaluation Authors Mr. Shubham Kedia, Dr. Divyanshu Joshi, Dr. Muthiah Saravanan Mahindra Research Valley, Mahindra & Mahindra, Chennai Objective Objective metrics for evaluation of major vehicle dynamics performance attributes i.e. ride, handling and steering are required to compare, validate and optimize dynamic behavior of vehicles. Some of these objective metrics are recommended and defined by ISO and SAE, which involve data processing, statistical analysis and complex mathematical operations on acquired data, through simulations or experimental testing. Due to the complexity of operations and volume of data, evaluation is often time consuming and tedious. Process automation using existing tools such as MS Excel, nCode, Siemens LMS, etc. includes several limitations and challenges, which make it cumbersome to implement.
Technical Paper

Model Based Design of Chassis-Frame with MATLAB

2019-11-21
2019-28-2429
In the current commercial vehicles market, ride-comfort and handling are crucial parameters for the customer and end user. There are various aspects which determine the vehicle behaviour. One of aspects is the structural rigidity of the vehicle, which has its own effect on vehicle dynamics. To meet the required stiffness of the main structural component of the vehicle i.e. chassis frame, FEA analysis has to be done in current methodology. The number of iterations have to be done to build an appropriate model with low weight, which can meet the design requirements. At first, conceptual design mock-up unit is to be developed then FEA (CAE) analysis to be done on it. If any design criteria are not met, then this cycle repeats again until it fulfils the required stiffness. Today, the direct stiffness procedure is the basic principle of almost every FEA software package.
Technical Paper

Analysis of pressure variation in wheel using statistical methods

2019-11-21
2019-28-2450
Objective: The Objective of the research is to detect drop in level of pressure in the wheel with respect to nominal pressure using data obtained from speed sensors. The research discusses the standard procedure of experimentation to obtain data which eventually used to produce results. This procedure is taken from principles Design of Experiments. Statistical tools are used to analyze and give determining factors for pressure variation. Methodology: To study idea, we made use of two-wheeler platform and collected data of wheel speed sensors on both wheels. The idea is when there is any change in tire pressure the radius of the wheel also changes and usually this relation is direct. Hence, change in tire pressure changes the angular velocity of the wheel. In this approach wheel speed sensors are used to measure the angular speed for standard and reduced pressure conditions.
Technical Paper

Analysis of occupant dynamics and optimization of Driver airbag performance against all FMVSS208 frontal impact cases using validated Finite element Methodology

2019-11-21
2019-28-2545
Several people die every year due to vehicle accidents. Federal Motor Vehicle Safety Standards (FMVSS) are U.S. federal regulations stating design, structure, performance, and durability necessities for vehicles. The objective of a crash test for FMVSS No. 208 is to measure how well a passenger vehicle would protect its occupants in the event of a frontal crash. FMVSS 208 consists of series of tests including different impact surface type as well as occupant sizes. It also covers the belted and unbelted occupant behavior at the time of front impact. Each test scenario has different ways to injure the occupant. Airbags are the part of passive safety equipment family in any automobile and play an imperative role to reduce the occupant head and chest injuries at the time of crash or accidents. This study covers the evaluation of airbag performance in all FMVSS 208 load cases using validated Finite Element Methodology (FEM).
Technical Paper

Passenger "Sleeper Bus" Structure, an Optimization Study using Finite Element Analysis

2019-11-21
2019-28-2537
Sleeper buses are increasingly used as connectivity between cities and remote areas with sleeping comfort for passengers. During the normal operation, the bus body is subjected to several loads, external loads from the road (i.e. crossing over a speed bump, breaking & cornering). Moreover, there is a substantial possibility that these loads may lead to a structural failure. Hence, it is necessary to determine stresses occurred in the bus body to ensure its integrity under these driving scenarios. During the accident, rollover/front/rear/side impact, energy absorbing capacity of bus body structure is crucial for safety of passengers. The objective of this study is to reduce weight of bus structure while maintaining cost & safety as constraint. 3D Model prepared in NX and finite element model created in hypermesh ,LS-dyna/optistruct used as solver and post processing done in hyperview. In this study, fully loaded bus with passengers as well as maximum language mass, considered.
Technical Paper

Design & analysis of 2 point aluminum upper control arm in modular multi link rear suspension system

2019-11-21
2019-28-2564
In current automobile market, due to the need of meeting future CO2 limits and emission standards, demand for hybrid systems is on the rise. In general, the requirements of modern automobile architecture demands modular chassis structure to develop vehicle variants using minimum platforms. The multi-link modular suspension system provides ideal solution to achieve these targets. To match ideal stiffness characteristics of system with minimum weight, aluminum links are proving a good alternative to conventional steel forged or stamped linkages. Design of current 2-point link (Upper Control Arm) is based on elasto-kinematic model developed using standard load cases from multi body dynamics. CAD system used is CATIA V5 to design upper control arm for rear suspension. This arm connects steering knuckle & rear sub frame. For Finite Element Analysis we used Hyperworks CAE tool to analyze design under all load cased & further optimization is done to resolve highly stressed zones.
Training / Education

Finite Element Analysis (FEA) for Design Engineers

2019-11-11
The Finite Element Analysis (FEA) has been widely implemented by automotive companies and is used by design engineers as a tool during the product development process. Design engineers analyze their own designs while they are still in the form of easily modifiable CAD models to allow for quick turnaround times and to ensure prompt implementation of analysis results in the design process.
Technical Paper

ROS-based Guidance Robot for Visually Impaired Patients

2019-10-28
2019-01-2609
According to recent statistics from the World Health Organization, the total number of visually impaired people in the world is very large. In order to solve the movement difficulties for blind people, we used pioneer 3dx robot to design and develop a system that can be used to help blind people when they move or travel. The proposed system can be used to guide the blinds and warn them to stop. It can also help blind people to avoid obstacles while walking. This will certainly compensate the visual defects of the blinds and improve their safety. The system uses Lidar and camera mounted on pioneer 3dx robot to achieve the desired functionalities. ROS was used to integrate the hardware and the software. The system was tested indoor and the robot was able to help blind people reach different destination safely.
Technical Paper

Lane Line detection by Lidar intensity value interpolation

2019-10-28
2019-01-2607
We present an approach to estimate a single lane line using a LiDAR unit for autonomous vehicles. By comparing the difference in elevation of LiDAR channels, a drivable region is defined. Further, by filtering and sorting intensity values, we are able to distinguish potential lane markings. By calculating the standard deviation of the lane markings in the y-axis the data can be further refined to specific points of interest. By applying a statistical approximation, to these points of interest, we can interpolate a linear approximation of the lane line.
X