Refine Your Search




Search Results

Technical Paper

Low Voltage Powertrain in Light Electric Vehicles

Engineering objective Light Electric Vehicles (LEV) with Li-ion batteries suffer from short battery life and poor efficiency, due to low grade electronics. Battery management systems (BMS) cannot always keep the pack in balance, and after cell voltages drift, capacity of the pack diminishes and some cells may destruct, causing a fire. The paper describes a novel approach to LEV powertrains using parallel connected battery cells & control methodology that keep cells in balance naturally, thereby eliminating BMS and hence safer to use. Li-Ion cells with different chemistries can be used and superior thermal management reduces temperature rise, resulting in longer battery life. Methodology Based on the original invention by the author, the system circuit schematics was designed and simulated using OrCAD PSpice. After obtaining results from the simulation, the first prototype device was constructed and tested in laboratory.
Technical Paper

Environmental and Health Impact of Electric and Hydrogen Light Vehicles: The Case of an Italian Small City

As the emission regulations get more and more stringent, the electric and fuel cell electric vehicles have attracted growing attention by automakers, governments, and consumers. In fact, electric and fuel cell vehicles coupled with low-carbon electricity sources offer the potential for reducing greenhouse gas emissions and exposure to tailpipe emissions from personal transportation. In particular, Pedal Assisted Bicycles (PAB) popularity is rising in urban areas due to their low energy consumption and environmental impact. In fact, they are zero emission vehicles with low noise emissions, as well. These positive characteristics could be even improved by coupling a PAB with a fuel cell based power generation system, thus increasing the vehicle autonomy without influencing their emissions and consumption performances. In this paper, four types of vehicles are compared from an environmental and accessibility point of view: conventional car, bus, electric PAB, and hydrogen fuel cell PAB.
Technical Paper

A Practical Recuperated Split Cycle Engine for Low Emissions and High Efficiency

The Recuperated Split Cycle Engine is a new type of ICE, offering a step change in efficiency and tailpipe emissions. It targets the heavy duty, long-haul sector (trucks, rail, shipping), where electrification is most challenging, and distributed generation, where capacity is required to support rising electrification. The engine separates cold (induction, compression) and hot (combustion, expansion) parts of the cycle; waste exhaust heat is recovered between them via a recuperator, as in a recuperated gas turbine. Recent research presented in another paper at this conference shows that the sonic airflows seen in the induction event give rise to extraordinary fuel mixing and clean, cool combustion, with potential for after-treated emission levels between SULEV and zero-impact (either unmeasurable or below ambient). However, recuperation and thermal insulation of the hot cylinder also enable high thermal efficiency, with a much flatter efficiency map than a conventional ICE.