Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Improved update-over-the-air solution through standardization of ‘software/firmware package format and flash jobs’

2019-11-21
2019-28-2435
This paper investigates and proposes the possibilities of standardizing the software/firmware package format and flash jobs in order to provide the possibility of productizing the update-over-the-air solution regarding on-board vehicle components and make use of it in all OEMs with minimum configuration changes and customization. The update-over-the-air solution in the automotive sector is provided by various suppliers and needs to be customized to meet various OEMs requirements. Possible Variants of OEM requirements are: • Variant 1 o Customer Portal + Backend + vehicle on-board components solution from supplier • Variant 2 o Customer Portal + Backend solution from OEM o Vehicle on-board components from supplier • Variant 3 o Backend from OEM o Customer Portal + vehicle on-board components from supplier ODX, VBF, and many other formats from OEMs include software/firmware packages.
Technical Paper

Approach for standardization of Advanced Driving Assistance System (ADAS) in India

2019-11-21
2019-28-2464
Authors: Aditi Sethi1, Siddhanta Shrivastava2, Madhusudan Joshi3 Organization: 1,2,3 International Centre for Automotive Technology, Manesar Introduction: With the increasing utilization of electronics in Indian automobile industry, there is an essential requirement for standardizing the functional safety of sub-systems that constitute advanced driving assistance system (ADAS) as it would be the foundation stone for the automated vehicles in future. These systems assist the driver and the driving process, further increasing the car safety and road safety, subsequently reducing human error. Due to interaction of several electronic control units (ECUs) in a vehicle and complexity of the system, electronic stability plays a vital role. Therefore, the standards shall be more performance oriented and technology neutral. They shall also cover validation tests associated with safety, mechanical rigidity, durability, environmental protection and electromagnetic compatibility.
Technical Paper

Performance & efficiency Improvement of Electric Vehicle Power train

2019-11-21
2019-28-2483
Introduction: The advent of electric mobility is changing the conventional mobility techniques and their application in automobiles across all segments. This development comes with challenges ranging across varied sub -systems in a vehicle including Power Train, HVAC, Accessories, etc. Objective: This paper would concentrate on the Power train related sub systems & improvement of the same both in terms of Efficiency & Performance. Methodology: The electric power train consists of three major sub parts: 1. Motor Unit 2. Controller with Power electronics 3. Battery Pack with BMS We would concentrate on improving the overall efficiency and performance of all these subsystems while they perform in vehicle environment and work in tandem by deploying following techniques: a. Improved Regenerative Braking for converting vehicles Kinetic energy into electrical energy using specific algorithms and control techniques b.
Technical Paper

TORQUE VECTORING DIFFERENTIAL SYSTEM FOR ELECTRIC VEHICLE

2019-11-21
2019-28-2485
Abstract The electrification of conventional internal combustion engine vehicle is a need of today’s advanced world to reduce the dependency of the transportation sector on the oil and gases. It can be achieved by replacing the engine by an electric motor which is powerful enough to provide required torque. The important requirement for a vehicle to drive in the hilly region with steep corners is proper torque distribution on each wheel which is taken care by the differential system. When the friction between road and wheels are different from left to right, then the wheel with low friction contact will lose its traction on the road. These situations are unfavorable for driving a vehicle on off-road and extrema conditions like driving in muddy roads or on the ice. These problems can be overcome by providing individual power supply system to separate wheels.
Technical Paper

Miniaturized and sleek protective device

2019-11-21
2019-28-2535
A miniaturized and sleek protective device M. Priyanka, Mahindra&Mahindra, India D. Boobala Krishnan*, Mahindra&Mahindra, India T.Vijayan, Mahindra& Mahindra, India Keywords-Fuse, Lightweight. Research and/or Engineering Questions/Objective: Now-a-days there is lot of advancement coming in automobiles. Earlier the electronics were used in engine and engine compartment areas. Now all hydraulics and transmission have been operated by electronics. The role of electronics like sensors, actuators increasing day by day for lifting and moving operations. With increase in electronics circuit, there is complex in wiring harness and packaging space for fuse box is premium Limitations: Limitations of placing other devices. Occupy more space and weight in the vehicle. Packing constraint due to vibration and thermal management issues. Methodology: Two different fuse of same rating can be given in one fuse and we can reduce the wire size.
Technical Paper

Design and Development of Constant speed diesel engine up to 20 bar BMEP with Inline FIS

2019-11-21
2019-28-2549
Design and Development of Constant speed diesel engine up to 20 bar BMEP with Inline FIS Remesan CB, Sanjay Aurora, Vasundhara V Arde, Vishal Kumar, Om Prakash Yadav, Piyush Ranjan Eicher Engines (A unit of TAFE Motors & Tractors Ltd.) Abstract Development trend in diesel engine is to achieve more power from same size of engine. With increase in brake mean effective pressure (BMEP), the peak firing pressure will also increase. The methodology to control the peak firing pressure on higher BMEP is the major challenge. We achieved better SFC with CPCB II emission targets on a constant speed engine. This study involves a systematic approach to optimize combustion parameters with a cost effective and robust inline Fuel Injection System. This paper deals with the strategies applied and experimental results for achieving the power density of 25kW/lit with Inline FIP by keeping lower Peak firing pressure.
Technical Paper

Development of high power density diesel engine for constant speed application

2019-11-21
2019-28-2566
Engine up gradation for higher power rating involves challenges that require hardware changes which not only increase cost but also demand higher space. This paper focuses on the up gradation of a 4 cylinder 4.9l CRDi engine from 24.03 kW/L to 30.75 kW/L by adjustment of various parameters to meet both emission and performance targets. Various challenges like higher exhaust temperature, increased peak firing pressure etc. were met using the proper calibration strategy. To meet SFC targets and keep peak firing pressures, exhaust temperatures within desired limits, different operating points for EGR, main injection timing, rail pressure have been optimized. The operating points for optimization were determined by conducting various drive trials on different type of load conditions in test bench. Calibration strategy involved the safe limits of NOx, soot, CO emissions, fuel consumption.pfp, and exhaust temperature.
Technical Paper

Combustion Optimization and In-cylinder NOx and PM Reduction by using EGR and Split Injection Technique

2019-11-21
2019-28-2560
Nowadays, the major most challenge in the diesel engine is the oxides of nitrogen (NOx) and particulate matter (PM) trade-off, with minimal reduction in Power and BSFC. Modern day engines also rely on expensive after-treatment devices, which may decrease the performance and increase the BSFC. In this paper, combustion optimization and in-cylinder emission control by introducing the Split injection technique along with EGR is carried out by 1-D (GT-POWER) simulation. Experiments were conducted on a 3.5 kW Single-cylinder naturally aspirated CRDI engine at the different load conditions. The Simulation model incorporates detailed pressure (Burn rate) analysis for different cases and various aspects of ignition delay, premixed and mixing controlled combustion rate, the injection rate affecting oxides of nitrogen and particulate matter.
Technical Paper

Experimental investigations on CO2 recovery from petrol engine exhaust using adsorption technology

2019-11-21
2019-28-2577
Energy policy reviews state that automobiles contribute 25% of the total Carbon-di-oxide (CO2) emission. The current trend in emission control techniques of automobile exhaust is to reduce CO2 emission. We know that CO2 is a greenhouse gas and it leads to global warming. Conversion of CO2 into carbon and oxygen is a difficult and energy consuming process when compared to the catalytic action of catalytic converters on CO, HC and NOX. The best way to reduce it is to capture it from the source, store it and use it for industry applications. To physically capture the CO2 from the engine exhaust, adsorbents like molecular sieves are utilized. When compared to other methods of CO2 separation, adsorption technique consumes less energy and the sieves can be regenerated, reused and recycled once it is completely saturated. In this research work, zeolite X13 was chosen as a molecular sieve to adsorb CO2 from the exhaust.
Technical Paper

Automobile Exhaust Emmision Control- A review

2019-11-21
2019-28-2382
Since the 20th century increase in the number of cars in the major cities is been a point of concern because of the toxic gasses being emitted from the engine of an automobile. These gasses are polluting the atmosphere and degrading the air to breathe. The main gasses responsible for the degradation of air quality are carbon monoxide, hydrocarbon and oxides of nitrogen. There is a necessity to find ways to reduce the pollution emitted into the atmosphere from the automobile. The source of emission is either evaporation from fuel tank or carburetor which is easy to be dealt with or harmful gasses due to improper combustion which is a concern for the environment. The two ways to reduce these emissions are, modification in the engine to minimize the production of harmful gases and to treat the harmful gasses emitted from the engine before blowing it into the atmosphere from the exhaust. Catalysts help to break harmful gasses into smaller compounds that are environment-friendly.
Technical Paper

Low Voltage Powertrain in Light Electric Vehicles

2019-11-21
2019-28-2467
Engineering objective Light Electric Vehicles (LEV) with Li-ion batteries suffer from short battery life and poor efficiency, due to low grade electronics. Battery management systems (BMS) cannot always keep the pack in balance, and after cell voltages drift, capacity of the pack diminishes and some cells may destruct, causing a fire. The paper describes a novel approach to LEV powertrains using parallel connected battery cells & control methodology that keep cells in balance naturally, thereby eliminating BMS and hence safer to use. Li-Ion cells with different chemistries can be used and superior thermal management reduces temperature rise, resulting in longer battery life. Methodology Based on the original invention by the author, the system circuit schematics was designed and simulated using OrCAD PSpice. After obtaining results from the simulation, the first prototype device was constructed and tested in laboratory.
Technical Paper

EMC challenges & solutions for Electric Buses

2019-11-21
2019-28-2503
EMC challenges & solutions for Electric Buses Enoch Eapen, Devender Kumar and Madhusudan Joshi International Centre for Automotive Technology, Manesar Electric buses are talk of the town in India with Government pushing the implementation of E-mobility in general and for public transportation in particular. However due to high voltages and complex power electronics design, it often becomes difficult to deal with EMC related non-compliances. ICAT being largely experienced in the EMC testing and validation of E-buses, would like to present the various EMC challenges and the solutions related to E-buses. In this paper we would share three case studies where the EMC issues related to E-buses were mitigated by either introducing simple changes to the existing design or through large/small modification.
Training / Education

Designing On-Board Diagnostics for Light and Medium Duty Emissions Control Systems

2019-11-11
On-board diagnosis of engine and transmission systems has been mandated by government regulation for light and medium vehicles since the 1996 model year. The regulations specify many of the detailed features that on-board diagnostics must exhibit. In addition, the penalties for not meeting the requirements or providing in-field remedies can be very expensive. This course is designed to provide a fundamental understanding of how and why OBD systems function and the technical features that a diagnostic should have in order to ensure compliant and successful implementation.
Training / Education

Advanced Power Electronics in Automotive Applications

2019-11-05
It’s estimated that over 40% of the on-board components in the entire car are electronic based and that percentage is expected to rise with the growth of hybrid and autonomous vehicles and will continue to be an enabling technology for a wide range of future loads with new features and functions. From lighting, infotainment, and safety systems, to powertrain systems and beyond, power electronics has become one of the most important areas of the automotive subsystem and bringing this technology to non-electrical engineers will help bridge a knowledge gap that will drive teams forward quicker and more efficiently.
Training / Education

Introduction to Power Electronics in Automotive Applications

2019-11-04
Modern power electronics (PE) devices and circuits are now in widespread use in automotive and non-automotive applications. The purpose of this course is to give an overall introduction to the key aspects of power electronic circuits, components and design in automotive applications. Topics covered include power semiconductor devices, their characteristics and operation, and their use in power electronics circuits.
Technical Paper

Emission and noise optimization of CRDe engine with pilot injection strategies

2019-10-11
2019-28-0019
he combustion strategies play a key role in emission improvisation and noise reduction on diesel engines equipped for higher emission norms. This paper clearly discussed on the selection of various operating points for optimization and employing of proper calibration strategies like pilot strategy, Main injection timing, EGR type and rail pressure variation for best emission and noise output. Various optimization techniques have been implemented in our study. Since the pilot injection quantity as well as timing are varied in our paper, careful matrix formulation is required to determine the best optimum point. Around 340 points were obtained on varying pilot quantity and pilot separation sweep chosen at single engine speed and load for both the pilots. Out of the above points, 5 sensitive points were selected ensuring the sensitivity of the emissions and noise.
Technical Paper

Parametric Calculation and Significance of Engine Dynamic Torque in Performance Benchmarking of a Vehicle

2019-10-11
2019-28-0028
The automotive industries around the globe is undergoing massive transformation towards technological capability to meet stringent legislative norms on fuel economy and emission. It is a challenging process to meet the regulatory standards without compromising on performance. The torque delivered by the engine at wide open throttle position in a transient condition from low idle to higher engine rpm is known as dynamic torque, which always need not to follow the defined FTP curve. The engine dynamic torque plays a crucial part in performance benchmarking of a vehicle as a visualization parameter to set the project targets. There exist a few methodologies to measure the engine brake torque like direct measurement using torque transducer which adds complexity and cost to the vehicle, ECU measured torque based on amount of fuel injection and empirical calculation using known engine speed.
Technical Paper

Effect of Injector cone angle and NTP on performance and emissions of CRDe engine for BS6 compliance

2019-10-11
2019-28-0108
The quality of combustion is affected by factors like engine components design, combustion chamber design, EGR, after treatments systems, engine operating parameters etc. The role of fuel injector is crucial on achieving the desired engine performance and emissions. Efficient combustion depends on the quantity of fuel injected, penetration, atomization and optimum injection timing. The nozzle through flow, cone angle, no of sprays and nozzle tip penetration are the factors which decide the selection of perfect injector for an engine. This paper focuses on the selection of the best fit injector suiting the BS6 application on evaluating the performance and emission characteristics. Injectors used were with varying cone angles and NTP which was varied by changing the sealing washer thickness. With all the above injector configuration, the performance and emission were thoroughly analysed at each level.
Technical Paper

Experimental investigation on EGR technique and fuel antioxidant additive in CI engine fuelled with plastic oil blend for emission reduction

2019-10-11
2019-28-0079
Experimental investigation on EGR technique and fuel antioxidant (p-Phenylenediamine) additive in plastic oil + diesel blend as test fuel in diesel engine is reported in this paper. The plastic oil is produced by waste plastics by the pyrolysis method. This plastic oil gives twin advantage of plastic waste management and also as alternate fuel for possible diesel fuel replacement. The plastic oil blend performance and emissions were nearer to neat diesel fuel. To reduce the NO emissions first EGR is fitted and tested. NO emission reduced by 18% compared to without EGR. Then antioxidant is added in (100 ppm level) with blended test fuel and found the NO emission reduction to be 15%. Performance, combustion and emission analysis were done in a single cylinder, four stroke, 5.2 kW diesel engine. Investigation results showed that the combined effect of EGR and antioxidant additive drastically reduces the NO emissions by 28%.
Technical Paper

Experimental and Numerical Prediction of the Pressure Drop Reduction of Catalytic Converter under Various Mass Flow Rate of Exhaust Gas for a Naturally Aspirated Diesel Engine

2019-10-11
2019-28-0030
Nowadays, Diesel emission control strategies are stricter across the globe which caused the rise in need of diesel after treat treatment devices that are more reliable and efficient. The optimized design of the catalytic converter aids in the durability of the product as well as the improvement in efficient operation of the Indian driving cycle. By changing the convergent and divergent cone angles of the catalytic converter, the consequential decrease in pressure drop leads to efficient flow of exhaust gases. The purpose of this study is to design, test, and analyse the catalytic converter in order to reduce the pressure drop in the exhaust system of a naturally aspirated diesel engine using both experimental and CFD techniques. In this study, a Diesel Oxidation Catalyst Catalytic Converter is investigated. For numerical analysis, ANSYS Fluent is used.
X