Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Automobile Exhaust Emmision Control- A review

2019-11-21
2019-28-2382
Since the 20th century increase in the number of cars in the major cities is been a point of concern because of the toxic gasses being emitted from the engine of an automobile. These gasses are polluting the atmosphere and degrading the air to breathe. The main gasses responsible for the degradation of air quality are carbon monoxide, hydrocarbon and oxides of nitrogen. There is a necessity to find ways to reduce the pollution emitted into the atmosphere from the automobile. The source of emission is either evaporation from fuel tank or carburetor which is easy to be dealt with or harmful gasses due to improper combustion which is a concern for the environment. The two ways to reduce these emissions are, modification in the engine to minimize the production of harmful gases and to treat the harmful gasses emitted from the engine before blowing it into the atmosphere from the exhaust. Catalysts help to break harmful gasses into smaller compounds that are environment-friendly.
Technical Paper

Design and Development of Constant speed diesel engine up to 20 bar BMEP with Inline FIS

2019-11-21
2019-28-2549
Design and Development of Constant speed diesel engine up to 20 bar BMEP with Inline FIS Remesan CB, Sanjay Aurora, Vasundhara V Arde, Vishal Kumar, Om Prakash Yadav, Piyush Ranjan Eicher Engines (A unit of TAFE Motors & Tractors Ltd.) Abstract Development trend in diesel engine is to achieve more power from same size of engine. With increase in brake mean effective pressure (BMEP), the peak firing pressure will also increase. The methodology to control the peak firing pressure on higher BMEP is the major challenge. We achieved better SFC with CPCB II emission targets on a constant speed engine. This study involves a systematic approach to optimize combustion parameters with a cost effective and robust inline Fuel Injection System. This paper deals with the strategies applied and experimental results for achieving the power density of 25kW/lit with Inline FIP by keeping lower Peak firing pressure.
Technical Paper

Development of high power density diesel engine for constant speed application

2019-11-21
2019-28-2566
Engine up gradation for higher power rating involves challenges that require hardware changes which not only increase cost but also demand higher space. This paper focuses on the up gradation of a 4 cylinder 4.9l CRDi engine from 24.03 kW/L to 30.75 kW/L by adjustment of various parameters to meet both emission and performance targets. Various challenges like higher exhaust temperature, increased peak firing pressure etc. were met using the proper calibration strategy. To meet SFC targets and keep peak firing pressures, exhaust temperatures within desired limits, different operating points for EGR, main injection timing, rail pressure have been optimized. The operating points for optimization were determined by conducting various drive trials on different type of load conditions in test bench. Calibration strategy involved the safe limits of NOx, soot, CO emissions, fuel consumption.pfp, and exhaust temperature.
Technical Paper

Combustion Optimization and In-cylinder NOx and PM Reduction by using EGR and Split Injection Technique

2019-11-21
2019-28-2560
Nowadays, the major most challenge in the diesel engine is the oxides of nitrogen (NOx) and particulate matter (PM) trade-off, with minimal reduction in Power and BSFC. Modern day engines also rely on expensive after-treatment devices, which may decrease the performance and increase the BSFC. In this paper, combustion optimization and in-cylinder emission control by introducing the Split injection technique along with EGR is carried out by 1-D (GT-POWER) simulation. Experiments were conducted on a 3.5 kW Single-cylinder naturally aspirated CRDI engine at the different load conditions. The Simulation model incorporates detailed pressure (Burn rate) analysis for different cases and various aspects of ignition delay, premixed and mixing controlled combustion rate, the injection rate affecting oxides of nitrogen and particulate matter.
Technical Paper

Development of low cost closed crankcase ventilation with oil mist separation system on light duty diesel engine.

2019-11-21
2019-28-2578
Currently automotive industry is facing bi-fold challenge of reduction in Greenhouse gases emissions as well as low operating cost. On one hand Emission regulations are getting more and more stringent on other hand there is major focus no customer value proposition. Engine blow by gases are one of the source of Greenhouse gases emission from engine. Blow by gases not only consist of unburn hydrocarbons but also carry large amount of oil. If oil is not separated from these gases, it will led to major oil consumption and hence increase total operating cost of Vehicle. In this paper, effort has been taken to develop a low cost closed crank case ventilation with oil mist separation system on diesel engine.
Technical Paper

Comparative Experimental Investigation of Thumba and Argemone oil Based Dual Fuel Blend in a Diesel Engine for its Performance and Emission Characteristics

2019-11-21
2019-28-2375
An experimental investigation was conducted to explore the possibility of using the Thumba oil (Citrullus Colocyntis) and Argemone Mexicana (non-edible and adulterer to mustard oil) as a dual fuel blend with diesel as an alternative of using pure diesel for its performance and emission characteristics. The work was carried on a single cylinder, four strokes, In-line overhead valve, direct injection compression ignition engine. The argemone and thumba biodiesel were produced using the transesterification process and thereafter the important physio-chemical properties of produced blends were investigated. Four dual biodiesel blends like ATB10 (5% Argemone, 5% Thumba and 90% Diesel), ATB20, ATB30 and ATB40 were prepared for investigation process. The operating conditions adopted for the study was the entire range of engine loads and speed (1000-1500 r/min) keeping the injection pressure and injection timing at the OEM settings.
Technical Paper

Experimental investigations on CO2 recovery from petrol engine exhaust using adsorption technology

2019-11-21
2019-28-2577
Energy policy reviews state that automobiles contribute 25% of the total Carbon-di-oxide (CO2) emission. The current trend in emission control techniques of automobile exhaust is to reduce CO2 emission. We know that CO2 is a greenhouse gas and it leads to global warming. Conversion of CO2 into carbon and oxygen is a difficult and energy consuming process when compared to the catalytic action of catalytic converters on CO, HC and NOX. The best way to reduce it is to capture it from the source, store it and use it for industry applications. To physically capture the CO2 from the engine exhaust, adsorbents like molecular sieves are utilized. When compared to other methods of CO2 separation, adsorption technique consumes less energy and the sieves can be regenerated, reused and recycled once it is completely saturated. In this research work, zeolite X13 was chosen as a molecular sieve to adsorb CO2 from the exhaust.
Training / Education

Designing On-Board Diagnostics for Light and Medium Duty Emissions Control Systems

2019-11-11
On-board diagnosis of engine and transmission systems has been mandated by government regulation for light and medium vehicles since the 1996 model year. The regulations specify many of the detailed features that on-board diagnostics must exhibit. In addition, the penalties for not meeting the requirements or providing in-field remedies can be very expensive. This course is designed to provide a fundamental understanding of how and why OBD systems function and the technical features that a diagnostic should have in order to ensure compliant and successful implementation.
Technical Paper

Assessing the Combined Outcome of Rice Husk Nano Additive and Water Injection Method on the Performance, Emission and Combustion Characters of the Low Viscous Pine Oil in a Diesel Engine

2019-10-28
2019-01-2604
The research work intends to assess the need and improvement of using a low viscous bio oil, RH (Rice Husk) Nano Particles and water injection method in enhancing the performance, emission and combustion characters of a diesel engine. One of the major setbacks for using biodiesel was its higher viscosity. Hence, a low viscous oil (Pine oil) which doesn’t need transesterification process was used as a biofuel in this study. To further improve its characteristics a non-metallic Nano additive produced from rice husk was added at 3 proportions (50, 100, 200 ppm) and the optimal quantity was found as 100ppm based on the BTE (brake thermal efficiency) value of 30.2% at peak load condition. This efficiency value was accompanied by a considerable decrease in pollutants like HC (Hydrocarbon), Smoke, CO (Carbon monoxide). On the contrary NOx (Oxides of Nitrogen) emission was found to be increased for all load values.
Training / Education

Emissions-Related OBD Systems A Design Overview

2019-09-20
On-board diagnostics, required by governmental regulations, provide a means for reducing harmful pollutants into the environment. Since being mandated in 1996, the regulations have continued to evolve and require engineers to design systems that meet strict guidelines. This one day seminar is designed to provide an overview of the fundamental design objectives and the features needed to achieve those objectives for generic on-board diagnostics. The basic structure of an on-board diagnostic will be described along with the system definitions needed for successful implementation.
Technical Paper

Effects of prechamber on efficiency improvement and emissions reduction of a SI engine fuelled with gasoline and CNG

2019-09-15
2019-24-0236
The permanent aim of the automotive industry is the further improvement of the engine efficiency and the simultaneous pollutant emissions reduction. The aim of the study was the optimization of the gasoline and compressed natural gas (CNG) combustion by means of a passive prechamber. This analysis allowed the improvement of the engine efficiency in lean-burn operation condition too. The investigation was carried out in an real small Spark Ignition (SI) engine fueled with Gasoline and CNG and equipped with a proper designed passive prechamber. In particular, Gasoline and CNG were used to analyze the effects of the prechamber on engine performance and associated pollutant emissions. Indicated Mean Effective Pressure, Heat Release Rate and Mass Burned Fraction were used to evaluate the effects on engine performance. Gaseous emissions were measured as well. Particulate Mass, Number and Size Distributions were analyzed.
Technical Paper

Exhaust Purification Performance Enhancement by Early Activation of Three Way Catalysts for Gasoline Engines Used in Hybrid Electric Vehicles

2019-09-09
2019-24-0148
Three-way catalyst (TWC) converters are used to purify the toxic substances such as carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbons (HC) emitted from gasoline engines. However, a large amount of emissions could be emitted before the TWC reaching its light-off temperature during cold start. For hybrid electric vehicles (HEVs) powered by gasoline engines, the emission purification performance by TWC unfortunately become worse caused by mode switching from engine to battery and vice versa, which is possible to generate cold start conditions over and over for TWC In this study, targeting at reducing the emissions from series HEVs by early activation of TWC, numerical simulations with experiments are carried out. A HEV is tested on a chassis dynamometer under Worldwide Light-duty Test Cycle (WLTC) mode; the upstream and downstream gas conditions of the close-coupled catalyst converter are measured.
Technical Paper

Analysis of TWC Operation Characteristics in a Euro6 Gasoline Light Duty Vehicle

2019-09-09
2019-24-0162
A Euro6 gasoline light duty vehicle has been tested at the engine dynamometer and the emissions have been analyzed upstream and downstream the Three-Way-Catalyst (TWC) during the WLTP cycle. Catalyst simulations have been used for assessing the processes inside the catalytic converter using a reaction scheme based on 19 brutto reactions (Direct oxidation and reduction, selective catalytic re-ductions with CO, C3H6 and H2, steam reforming, water-gas shift and bulk Ceria as well as surface Ce-ria reactions). The reactions have been parametrized in order to best approximate the measurements. Based on the reactions taken into account, the real vehicle emissions can be predicted with good accu-racy. The simulations show that the cycle emissions are comprising mainly by the cold start contribution as well as discrete emission break-through events during transients.
Technical Paper

Sub-23 nm Particulate Emissions from a Highly Boosted GDI Engine

2019-09-09
2019-24-0153
The European Particle Measurement Program (PMP) defines the current standard for measurement of particle number (PN) emissions from vehicles in Europe. This specifies a 50% count efficiency (D50) at 23 nm and a 90% count efficiency (D90) at 41 nm. Particulate emissions from Gasoline Direct Injection (GDI) engines have been widely studied, but usually only in the context of PMP or similar sampling procedures. There is increasing interest in the smallest particles – i.e. smaller than 23 nm – which can be emitted from vehicles. The literature suggest that by moving D50 to 10 nm, PN emissions from GDI engines might increase by between 35 and 50 % but there remains a lot of uncertainty.
Technical Paper

Impact of Ethanol and Aromatic Hydrocarbons Content on Particulate Emissions from a Gasoline Vehicle

2019-09-09
2019-24-0160
The impact of transport on global and local pollution have resulted in stricter emission limits. More specifically, increasing attention is being paid to particulate emissions at the exhaust gases in spark ignition engines. The particulate formation is mainly affected by: 1-fuel properties, 2-engine and fuel system characteristics and 3-Exhaust after-treatment system. In order to estimate the influence of fuel characteristics on particulate emissions, several research works have proposed fuel indices that correlate some of the fuel physical and chemical properties with engine particulate emissions. This work investigates the impact of fuel composition on particulate emissions and evaluates the Particulate Matter Index (PMI) proposed by Aikawa et. al, and other fuel indices, in terms of agreement with vehicle test bed results for a passenger car.
Technical Paper

Chemical and Physical Characterization of Organic Particulate Matter from Last Generation Exhaust Aftertreatment System of Medium Duty Diesel Engine

2019-09-09
2019-24-0053
Particulate Matter from Euro 6 Medium Duty diesel engine was analyzed from engine-out, downstream of particulate filter (DPF), and up to the exit of a selective catalytic reactor (SCR) to characterize its chemical and physical nature. Particular attention was devoted to the analysis of particles down to 23 nm. An array of chemical, physical and spectroscopic techniques (Gas chromatography coupled with mass spectrometry (GC-MS), mobility analyzer, UV-visible absorption and fluorescence spectroscopy) was applied for characterizing the organic particulate matter (PM, constituted of polycyclic aromatic hydrocarbons (PAH), heavy aromatic compounds, soot) in the exhaust. The engine was operated at “full-load” (100% of the total power, representing the best performance of the engine operation) condition, and at different engine speeds. Results showed that the DPF efficiency was greater than 96% in the reduction of the sub 23 nm particles across the speeds range.
Technical Paper

Experimental Investigations on Engine-Out Emissions Sensitivity to Fuel Injection Pressure of a High-Performance DISI Single Cylinder Engine

2019-09-09
2019-24-0169
In recent times complying with increasingly stringent emission regulations has become ever more challenging. While an efficient after-treatment system that includes gasoline particulate filter enables compliance with legislation requirements, lowering engine-out emissions by improving combustion system has to be considered as a crucial advantage not only in regard to pollutants emission control, but also performance. In this respect, high-performance enabling contents such as relatively large displacement, flow-capacity oriented intake ports and a limited stroke-to-bore ratio have significant drawbacks on the charge motion quality and as direct consequence on mixture formation and homogeneity.
Technical Paper

Semi-Volatile Organic Compounds From a Combined Dual Port Injection/Direct-Injection Technology Light-Duty Gasoline Vehicle

2019-09-09
2019-24-0051
Gasoline direct injection (GDI) has changed the exhaust composition in comparison with the older port fuel injection (PFI) systems. More recently, light-duty vehicle engine manufactures have combined these two technologies to take advantage of the knock benefits and fuel economy of GDI with the low particulate emission of PFI. These dual injection strategy engines have made a significant change in the combustion emission composition produced by these engines. Understanding the impact of these changes is essential for automotive companies and aftertreatment developers. A novel sampling system was designed to sample the entire exhaust generated by a dual injection strategy gasoline vehicle using the United States Federal Test Procedure (FTP). This sampling system was capable of measuring the regulated emissions as well as collecting the entire exhaust from the vehicle for unregulated emissions.
Technical Paper

Hybrid Powertrain Calibration Techniques

2019-09-09
2019-24-0196
Meeting the particle (PN) emissions limits in dynamic vehicle test sequences needs specific attention on each power variation event occurring in the internal combustion engine (ICE). Such transients arise from engine start onwards along the entire test drive. In hybrid systems, there is one further source for transient ICE response: each power shift between E-motor (EM) and ICE introduces gas flow variations with subsequent temperature response in the ICE and in the engine aftertreatment system (EAS). This bears consequences for engine out emissions as well as for the EAS efficiency and even for the durability of a catalytic converter. As system calibration engineers must decide on numerous actuator parameters, their decisions, finally, are crucial for meeting legislative limits under the boundary conditions given by the ICE’s hybrid and drive environment.
X