Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Designing On-Board Diagnostics for Light and Medium Duty Emissions Control Systems

2020-10-20
On-board diagnosis of engine and transmission systems has been mandated by government regulation for light and medium vehicles since the 1996 model year. The regulations specify many of the detailed features that on-board diagnostics must exhibit. In addition, the penalties for not meeting the requirements or providing in-field remedies can be very expensive. This course is designed to provide a fundamental understanding of how and why OBD systems function and the technical features that a diagnostic should have in order to ensure compliant and successful implementation.
Training / Education

Advanced Diesel Particulate Filtration Systems

2020-09-18
As diesel emissions regulations have become more and more stringent, diesel particulate filters (DPF) have become possibly the most important and complex diesel aftertreatment device. This seminar covers many DPF-related topics using fundamentals from various branches of applied sciences such as porous media, filtration and materials sciences and will provide the student with both a theoretical as well as an applications-oriented approach to enhance the design and reliability of aftertreatment platforms.
Training / Education

Emissions-Related OBD Systems A Design Overview

2020-03-27
On-board diagnostics, required by governmental regulations, provide a means for reducing harmful pollutants into the environment. Since being mandated in 1996, the regulations have continued to evolve and require engineers to design systems that meet strict guidelines. This one day seminar is designed to provide an overview of the fundamental design objectives and the features needed to achieve those objectives for generic on-board diagnostics. The basic structure of an on-board diagnostic will be described along with the system definitions needed for successful implementation.
Technical Paper

Modeling for collective effect of Muffler geometric modifications and blended microalgae fuel use on exhaust performance of a four-stroke diesel engine: A Computational Fluid Dynamics Approach

2019-11-21
2019-28-2377
Engine performance significantly depends on the effective exhaust of the combustion gases from the muffler. With stricter BSVI norms more efficient measures has to be adopted to reduce the levels of exhaust emissions from the exhaust to the atmosphere. Muffler along with reducing the engine noise, is intended to control the back pressure as well. Back pressure change has significant effect on muffler temperature distribution which affects the NOx emission from the exhaust. Many research communications have been made to reduce the exhaust emissions like HC, CO and CO2 from the exhaust by using different generation biofuels as alternate fuel, yet they have confronted challenges in controlling the NOx content from exhaust. This work presents the combined effect of Muffler geometry modifications and blended microalgal fuel on exhaust performance with an aim to reduce NOx emission from the exhaust of a four-stroke engine.
Technical Paper

Comparative Experimental Investigation of Thumba and Argemone oil Based Dual Fuel Blend in a Diesel Engine for its Performance and Emission Characteristics

2019-11-21
2019-28-2375
An experimental investigation was conducted to explore the possibility of using the Thumba oil (Citrullus Colocyntis) and Argemone Mexicana (non-edible and adulterer to mustard oil) as a dual fuel blend with diesel as an alternative of using pure diesel for its performance and emission characteristics. The work was carried on a single cylinder, four strokes, In-line overhead valve, direct injection compression ignition engine. The argemone and thumba biodiesel were produced using the transesterification process and thereafter the important physio-chemical properties of produced blends were investigated. Four dual biodiesel blends like ATB10 (5% Argemone, 5% Thumba and 90% Diesel), ATB20, ATB30 and ATB40 were prepared for investigation process. The operating conditions adopted for the study was the entire range of engine loads and speed (1000-1500 r/min) keeping the injection pressure and injection timing at the OEM settings.
Technical Paper

Utilisation Treated Waste Engine oil and Diesohol blends as fuel for Compression Ignition Engine – An Experimental Study

2019-11-21
2019-28-2384
Diesel Ethanol (Diesohol) blends are one of the suitable alternative fuel to replace diesel for fueling the compression ignition engines. This experimental study is to utilize optimal fuel blend that contains a higher volume of ethanol in diesel with treated waste engine oil as co-solvent for preventing the phase separation. This study includes three stages: Treating the waste engine oil, preparation of diesel ethanol blends with treated waste engine oil as co-solvent, testing the blends for solubility, properties and performance in a compression ignition engines. Treatment of waste engine oil was conducted in five steps including the acid-clay treatment, in which acetic acid and fuller earth were used as treating materials. Solubility test was conducted for various proportions of diesel-ethanol blends (from 0% to 50% of ethanol by volume) and treated waste engine oil (from 5% to 25%). The stable blends were tested for essential properties as per the ASTM standards.
Technical Paper

EMISSION REDUCTION OF A DIESEL ENGINE FUELED WITH BLENDS OF BIOFUEL UNDER THE INFLUENCE OF 1,4-DIOXANE AND RICE HUSK NANO PARTICLE.

2019-11-21
2019-28-2387
Research Objectives. In this modern era increase in Pollution became a huge impact in the lives of all living creatures, in this automobile tends to be one of the major contributors in terms of air pollution thanks to their exhaust emissions. The objective of the present study is to reduce the amount of harmful pollutants emitted from the automobiles by the utilization of a biofuel further influenced by two additives (liquid and a Nano additive). Methodology In this study, first the bio oil is extracted, Then the biofuel is mixed with diesel fuel at different proportions of 20%, 40% by volume. Experiments are carried out in a direct injection compression ignition engine, which is a stationary test engine manufactured by Kirloskar, connected to a computer setup. The emission values in the exhaust gases are obtained using AVL exhaust gas analyzer.
Technical Paper

A Technical Review on Performance and Emissions of Compressed Natural Gas – Diesel Dual Fuel Engine

2019-11-21
2019-28-2390
In view of the depletion of energy and environmental pollution, dual fuel technology has caught the attention of researchers as a viable technology keeping in mind the increased availability of fuels like Compressed Natural Gas (CNG). It is an ecologically friendly technology due to lower PM and smoke emissions and retains the efficiency of diesel combustion. Generally, dual fuel technology has been prevalent for large engines like marine, locomotive and stationary engines. However, its use for automotive engines has been limited in the past due to constraints of the limited supply of alternative fuels. CNG is a practical fuel under dual-fuel mode operation, with varying degree of success. The induction method prevents a premixed natural gas-air mixture, minimizes the volumetric efficiency and results in a loss of power at higher speeds.
Technical Paper

Design and Development of Constant speed diesel engine up to 20 bar BMEP with Inline FIS

2019-11-21
2019-28-2549
Design and Development of Constant speed diesel engine up to 20 bar BMEP with Inline FIS Remesan CB, Sanjay Aurora, Vasundhara V Arde, Vishal Kumar, Om Prakash Yadav, Piyush Ranjan Eicher Engines (A unit of TAFE Motors & Tractors Ltd.) Abstract Development trend in diesel engine is to achieve more power from same size of engine. With increase in brake mean effective pressure (BMEP), the peak firing pressure will also increase. The methodology to control the peak firing pressure on higher BMEP is the major challenge. We achieved better SFC with CPCB II emission targets on a constant speed engine. This study involves a systematic approach to optimize combustion parameters with a cost effective and robust inline Fuel Injection System. This paper deals with the strategies applied and experimental results for achieving the power density of 25kW/lit with Inline FIP by keeping lower Peak firing pressure.
Technical Paper

Automobile Exhaust Emmision Control- A review

2019-11-21
2019-28-2382
Since the 20th century increase in the number of cars in the major cities is been a point of concern because of the toxic gasses being emitted from the engine of an automobile. These gasses are polluting the atmosphere and degrading the air to breathe. The main gasses responsible for the degradation of air quality are carbon monoxide, hydrocarbon and oxides of nitrogen. There is a necessity to find ways to reduce the pollution emitted into the atmosphere from the automobile. The source of emission is either evaporation from fuel tank or carburetor which is easy to be dealt with or harmful gasses due to improper combustion which is a concern for the environment. The two ways to reduce these emissions are, modification in the engine to minimize the production of harmful gases and to treat the harmful gasses emitted from the engine before blowing it into the atmosphere from the exhaust. Catalysts help to break harmful gasses into smaller compounds that are environment-friendly.
Technical Paper

Engine Fuel Economy Optimization for different Hybrid Architectures using 1-D Simulation technique

2019-11-21
2019-28-2496
In order to improve fuel economy of the 3.3 litre tractor model, various kinds of engine hybridization is studied. This paper presents a methodology to predict engine fuel consumption using 1-D software by coupling Ricardo Wave and Ricardo Ignite. Engine fuel consumption and emission maps are predicted using Ricardo WAVE. These maps are used as an input to IGNITE for predicting cumulative fuel consumption. There is good agreement within 10% deviation between simulated cumulative fuel consumption and experimental cumulative fuel consumption. Same calibrated model is used further for studying series hybridization, parallel P1 type and Parallel P2 type of hybridization. A design of experiment (DOE) model is run for different electric motor sizes, battery capacity and battery state of charge condition, to understand their effects on overall engine fuel consumption and cycle soot emission. Model predicts overall significant reduction in cumulative fuel consumption and soot emission.
Technical Paper

Combustion Optimization and In-cylinder NOx and PM Reduction by using EGR and Split Injection Technique

2019-11-21
2019-28-2560
Nowadays, the major most challenge in the diesel engine is the oxides of nitrogen (NOx) and particulate matter (PM) trade-off, with minimal reduction in Power and BSFC. Modern day engines also rely on expensive after-treatment devices, which may decrease the performance and increase the BSFC. In this paper, combustion optimization and in-cylinder emission control by introducing the Split injection technique along with EGR is carried out by 1-D (GT-POWER) simulation. Experiments were conducted on a 3.5 kW Single-cylinder naturally aspirated CRDI engine at the different load conditions. The Simulation model incorporates detailed pressure (Burn rate) analysis for different cases and various aspects of ignition delay, premixed and mixing controlled combustion rate, the injection rate affecting oxides of nitrogen and particulate matter.
Technical Paper

Development of Diesel Particulate NOx Reduction DPNR System for Simultaneous Reduction of PM and NOx in Diesel Engines

2019-11-21
2019-28-2554
The Diesel Particulate NOx Reduction (DPNR) system is used for simultaneous reduction of PM and NOx in diesel engine. DPF is used to trap particulate matter in diesel engines. NOx absorber technology removes NOx in a lean (i.e. oxygen rich) exhaust environment for both diesel and gasoline lean-burn GDI engines. The NOx storage and reduction catalyst is uniformly coated on the wall surface and in the fine pores of a highly porous filter substrate. Combination of these two components in the DPNR results in a compact size of the system. The base diesel engine model validated with pressure crank angle diagram and performance parameters such as Indicated mean effective pressure. This base engine’s exhaust emission is given as an input to the DPNR system. The surface reaction is connected to the DPF through chemcon template. The surface reaction is NOx storage and reduction chemical kinetics like Lean NOx Trap. The modelling of DPNR and Base engine is done using GT-SUITE.
Technical Paper

Experimental investigations on CO2 recovery from petrol engine exhaust using adsorption technology

2019-11-21
2019-28-2577
Energy policy reviews state that automobiles contribute 25% of the total Carbon-di-oxide (CO2) emission. The current trend in emission control techniques of automobile exhaust is to reduce CO2 emission. We know that CO2 is a greenhouse gas and it leads to global warming. Conversion of CO2 into carbon and oxygen is a difficult and energy consuming process when compared to the catalytic action of catalytic converters on CO, HC and NOX. The best way to reduce it is to capture it from the source, store it and use it for industry applications. To physically capture the CO2 from the engine exhaust, adsorbents like molecular sieves are utilized. When compared to other methods of CO2 separation, adsorption technique consumes less energy and the sieves can be regenerated, reused and recycled once it is completely saturated. In this research work, zeolite X13 was chosen as a molecular sieve to adsorb CO2 from the exhaust.
Technical Paper

Optimization of Bio-diesel fuel filter Size media and configuration for longer service interval .

2019-11-21
2019-28-2391
Bio diesel is one of the most promising fuel which can not only replace the conventional fuels but also environment friendly in terms of Greenhouse gases emission. Adaptation of Bio diesel comes with reduced maintainability and high maintenance cost. Blends of biodiesel and conventional diesel are most commonly used in automotive diesel engines. Biodiesel is most popular choice as an alternate fuel of fossil diesel due to its easy availability, eco-friendly nature and minimum change in existing diesel engine for retro fitment. In this paper efforts have been taken to optimize the life of Fuel filter for bio diesel application. For improving Fuel filter life, modifications carried out in Fuel filter media, size and configuration. Further, Fuel filter tested on Engine test bed and Vehicle to establish the life of filter in real world usage condition. Testing Results were compared with existing diesel fuel filter.
Event

Exhibit/Sponsor - Heavy-Duty Diesel Emissions Control Symposium

2019-11-12
Innovative and enquiring specialists gather together 2020 SAE International Heavy-Duty Diesel Emissions Control Symposium (HDD) expand their knowledge collaborate most promising new technologies: emission control strategies, in-service maintenance, retro-fitting exhaust after-treatment equipment, global harmonization emission standards, regulatory activities
Event

Contact - Heavy-Duty Diesel Emissions Control Symposium

2019-11-12
Innovative and enquiring specialists gather together 2020 SAE International Heavy-Duty Diesel Emissions Control Symposium (HDD) expand their knowledge collaborate most promising new technologies: emission control strategies, in-service maintenance, retro-fitting exhaust after-treatment equipment, global harmonization emission standards, regulatory activities
X