Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

FEA Beyond Basics Thermal Analysis

2019-12-16
Finite Element Analysis (FEA) is a powerful and well recognized tool used in the analysis of heat transfer problems. However, FEA can only analyze solid bodies and, by necessity thermal analysis with FEA is limited to conductive heat transfer. The other two types of heat transfer: convection and radiation must by approximated by boundary conditions. Modeling all three mechanisms of heat transfer without arbitrary assumption requires a combined use of FEA and Computational Fluid Dynamics (CFD).
Technical Paper

Affect of Tyre inflation on Rolling Resistance of Tyre

2019-11-21
2019-28-2415
Rolling resistance refers to the various forms of resistance against driving force when the vehicle is in motion. Several factors contribute to rolling resistance, including wind drag on the car, acceleration resistance generated by inertia force when speeding up, and resistance on the tyres. Tyre inflation pressure plays vital role on Coefficient of Rolling Resistance (RRC) of Tyre consequently vehicle mileage. Low or High tyre pressure is not good for driving comfort, safety of vehicle well as for environment. Petroleum Conservation Research Association ( PCRA ) has taken good initiative in direction to Tyre Star marking based on RRC values of Tyre.
Technical Paper

Low Voltage Powertrain in Light Electric Vehicles

2019-11-21
2019-28-2467
Engineering objective Light Electric Vehicles (LEV) with Li-ion batteries suffer from short battery life and poor efficiency, due to low grade electronics. Battery management systems (BMS) cannot always keep the pack in balance, and after cell voltages drift, capacity of the pack diminishes and some cells may destruct, causing a fire. The paper describes a novel approach to LEV powertrains using parallel connected battery cells & control methodology that keep cells in balance naturally, thereby eliminating BMS and hence safer to use. Li-Ion cells with different chemistries can be used and superior thermal management reduces temperature rise, resulting in longer battery life. Methodology Based on the original invention by the author, the system circuit schematics was designed and simulated using OrCAD PSpice. After obtaining results from the simulation, the first prototype device was constructed and tested in laboratory.
Technical Paper

Thermal Management of Li-Ion Battery Pack using GT-SUITE

2019-11-21
2019-28-2500
Objective It is very important to simulate the battery pack being built to understand its behavior when used in applications especially Electric vehicles (EV). All Li-Ion cells are not the same. They need to be characterized before building any battery pack. Hence modeling the battery pack to simulated its performance in the actual conditions becomes important. Methodology To understand the behavior of cells in the on-field environment, they are tested at various conditions like different rates of charging/discharging, various depth of discharge (DOD), ambient temperature, etc. HPPC test is also performed on cells to derive its RC model equivalent model. GT Suite simulation software is used to model the Li-Ion cell using the testing data. Depending on the pack configuration, the modeled cell is connected in the required series and parallel configuration, to study the battery pack with respect to aging, performance and cooling requirements.
Technical Paper

Electric Vehicle Thermal Management System For Hot Climate Regions

2019-11-21
2019-28-2507
ELECTRIC VEHICLE THERMAL MANAGEMENT SYSTEM FOR HOT CLIMATE REGIONS Rana Tarun*, Yamamoto Yuji, Kumar Ritesh, Bhagatkar Shubhada Pranav Vikas India Private Limited, India Key Words Electric Vehicles (EV); Battery Thermal Management System (BTMS); COP; Electric Vehicle Thermal Management System (EVTMS); BTMS and HVAC System Integration; Thermal System Performance Comparison; Active Liquid Cooling; EV Battery Cooling Research and/or Engineering Questions/Objective Electric Vehicles is the need of time to limit global warming and it is in application at a wide scale in colder or mild climate regions where ambient temperature is limited to mild or moderate level. Its application (Heat pump, CO2) is constrained to cold climates only due to securing better COP for heating function, sacrificing cooling COP of the existing system when operated in Hot Climate Regions, thus limiting its application to nearly half of the automotive user-base.
Technical Paper

Thermal Challenges in Automotive Exhaust System through Heat Shield Insulation

2019-11-21
2019-28-2539
While advanced automotive system assemblies contribute greater value to automotive safety, reliability, emission/noise performance and comfort, they are also generating higher temperatures that can reduce the functionality and reliability of thesystem over time. Thermal management and insulation are extremely important and highly demanding in BSVI, RDE and Non-IC engine operating vehicles. Passenger vehicle and Commercial vehicle exhaust systems are facing multiple challenges such as packaging constraints, weight reduction andthermalmanagement requirements.Frugal engineering is mandatory to develop heat shield in the exhaust system with minimum heat loss. The focus of the paper is to design, develop and validate heat shield products with different variables such as design gap, insulation material, sheet metal thickness and manufacturing processes. 1D and 3D computational simulations are performed with different gaps from 3 mm to 14 mm are considered.
Technical Paper

Replacing twin electric fan radiator with Single fan radiator

2019-11-21
2019-28-2381
Downsizing is one of the crucial activities being performed by every automotive engineering organization. The main aim is to reduce – Weight, CO2 emissions and achieve cost benefit. All this is done without any compromise on performance requirement or rather with optimization of system performance. This paper evaluate one such optimization, where-in radiator assembly with two electric fan is targeted for downsizing for small commercial vehicle application. The present two fan radiator is redesigned with thinner core and use of single fan motor assembly. The performance of the heat exchanger is tested for similar conditions back to back on vehicle and optimized to get the balanced benefit in terms of weight, cooling performance and importantly cost. This all is done without any modification in vehicle interface components except electrical connector for fan. The side members and brackets design is also simplified to achieve maximum weight reduction.
Technical Paper

Correlation of Noise Emitted by vehicle on an External Pass-By Noise Track and Indoor Anechoic Chamber

2019-11-21
2019-28-2425
Ikshit Shrivastava1, Kiranpreet Singh2 1,2 International Centre for Automotive Technology (ICAT), Gurugram, India Introduction: Pass By Noise emitted by the vehicle is one of the most critical tests for certification is vehicle worldwide. There are a number of national and international regulations to define test procedure. Though the available tracks are constructed to meet the requirements of these test standards, but there are other external parameters viz. ambient temperature, barometric pressure, wind speed and its direction, affecting the measurements. These parameters are beyond the control of human and this contamination of test data results in longer test time to monitor atmospheric/ambient conditions and perform the test. Indoor pass-by noise testing is a comparatively new method of testing, which is yet to be evaluated for repeatability/correlation with conventional exterior pass-by noise testing.
Technical Paper

Optimization of Compression Ratio for DI Diesel Engines for better fuel Economy

2019-11-21
2019-28-2431
Fuel economy is becoming one of the key parameter as it not only accounts for the profitability of commercial vehicle owner but also has impact on environment. Fuel economy gets affected from several parameters of engine such as Peak firing pressure, reduction in parasitic losses, improved volumetric efficiency, improved thermal efficiency etc. Compression ratio is one of key design criteria which affects most of the above mentioned parameters, which not only improve fuel efficiency but also results in improvement of emission levels. This paper evaluates the optimization of Compression ratio and study its effect on Engine performance. The parameters investigated in this paper include; combustion bowl volume in Piston and Cylinder head gasket thickness as these are major contributing factors affecting clearance volume and in turn the compression ratio of engine. Based on the calculation results, an optimum Compression Ratio for the engine is selected.
Technical Paper

Analysis of pressure variation in wheel using statistical methods

2019-11-21
2019-28-2450
Objective: The Objective of the research is to detect drop in level of pressure in the wheel with respect to nominal pressure using data obtained from speed sensors. The research discusses the standard procedure of experimentation to obtain data which eventually used to produce results. This procedure is taken from principles Design of Experiments. Statistical tools are used to analyze and give determining factors for pressure variation. Methodology: To study idea, we made use of two-wheeler platform and collected data of wheel speed sensors on both wheels. The idea is when there is any change in tire pressure the radius of the wheel also changes and usually this relation is direct. Hence, change in tire pressure changes the angular velocity of the wheel. In this approach wheel speed sensors are used to measure the angular speed for standard and reduced pressure conditions.
Technical Paper

Coupled Electro-Chemical and Thermal Modeling for Cylindrical Lithium-ion Batteries

2019-11-21
2019-28-2488
The shift over of the automobile sector from the ICE to the electric drives is imminent due to arising global issues of pollution and ever rising pressure on the demand of the natural resources due to lower efficiency of the ICE drives. This has led to uprising of the Lithium-ion batteries, with addition of the burden of living to expectation of clean energy and higher efficiencies. Alongside, with limitation in the availability of the lithium-ion batteries they carry a hefty price tag with them, hence causing huddles in the research. Lack of research leads to failure of batteries and may cause life threatening situations when operating in the vehicle. In order to insight the working of the cylindrical lithium-ion batteries under different driving and environmental conditions a methodology is developed for the coupled electro-chemical and thermal phenomenon. This allows anticipating the behaviour of the battery under different conditions that influence its performance.
Technical Paper

Potential for Emission Reduction and Fuel Economy with Micro & Mild HEV

2019-11-21
2019-28-2504
The development of modern combustion engines (spark ignition as well as compression ignition) for vehicles compliant with future oriented emission legislation (BS6, Euro VI, China 6) has introduced several technologies for improvement of both fuel efficiency as well as low emissions combustion strategies. Some of these technologies as there are high pressure multiple injection systems or sophisticated exhaust gas aftertreatment system imply substantial increase in test and calibration time as well as equipment cost. With the introduction of 48V systems for hybridization a cost-efficient enhancement and, partially, an even attractive alternative is now available. An overview will be given on current technologies as well as on implemented or simulated vehicle concepts for light duty gasoline and diesel powertrains.
Technical Paper

Miniaturized and sleek protective device

2019-11-21
2019-28-2535
A miniaturized and sleek protective device M. Priyanka, Mahindra&Mahindra, India D. Boobala Krishnan*, Mahindra&Mahindra, India T.Vijayan, Mahindra& Mahindra, India Keywords-Fuse, Lightweight. Research and/or Engineering Questions/Objective: Now-a-days there is lot of advancement coming in automobiles. Earlier the electronics were used in engine and engine compartment areas. Now all hydraulics and transmission have been operated by electronics. The role of electronics like sensors, actuators increasing day by day for lifting and moving operations. With increase in electronics circuit, there is complex in wiring harness and packaging space for fuse box is premium Limitations: Limitations of placing other devices. Occupy more space and weight in the vehicle. Packing constraint due to vibration and thermal management issues. Methodology: Two different fuse of same rating can be given in one fuse and we can reduce the wire size.
Technical Paper

Design and Development of Constant speed diesel engine up to 20 bar BMEP with Inline FIS

2019-11-21
2019-28-2549
Design and Development of Constant speed diesel engine up to 20 bar BMEP with Inline FIS Remesan CB, Sanjay Aurora, Vasundhara V Arde, Vishal Kumar, Om Prakash Yadav, Piyush Ranjan Eicher Engines (A unit of TAFE Motors & Tractors Ltd.) Abstract Development trend in diesel engine is to achieve more power from same size of engine. With increase in brake mean effective pressure (BMEP), the peak firing pressure will also increase. The methodology to control the peak firing pressure on higher BMEP is the major challenge. We achieved better SFC with CPCB II emission targets on a constant speed engine. This study involves a systematic approach to optimize combustion parameters with a cost effective and robust inline Fuel Injection System. This paper deals with the strategies applied and experimental results for achieving the power density of 25kW/lit with Inline FIP by keeping lower Peak firing pressure.
Technical Paper

Development of high power density diesel engine for constant speed application

2019-11-21
2019-28-2566
Engine up gradation for higher power rating involves challenges that require hardware changes which not only increase cost but also demand higher space. This paper focuses on the up gradation of a 4 cylinder 4.9l CRDi engine from 24.03 kW/L to 30.75 kW/L by adjustment of various parameters to meet both emission and performance targets. Various challenges like higher exhaust temperature, increased peak firing pressure etc. were met using the proper calibration strategy. To meet SFC targets and keep peak firing pressures, exhaust temperatures within desired limits, different operating points for EGR, main injection timing, rail pressure have been optimized. The operating points for optimization were determined by conducting various drive trials on different type of load conditions in test bench. Calibration strategy involved the safe limits of NOx, soot, CO emissions, fuel consumption.pfp, and exhaust temperature.
Technical Paper

Combustion Optimization and In-cylinder NOx and PM Reduction by using EGR and Split Injection Technique

2019-11-21
2019-28-2560
Nowadays, the major most challenge in the diesel engine is the oxides of nitrogen (NOx) and particulate matter (PM) trade-off, with minimal reduction in Power and BSFC. Modern day engines also rely on expensive after-treatment devices, which may decrease the performance and increase the BSFC. In this paper, combustion optimization and in-cylinder emission control by introducing the Split injection technique along with EGR is carried out by 1-D (GT-POWER) simulation. Experiments were conducted on a 3.5 kW Single-cylinder naturally aspirated CRDI engine at the different load conditions. The Simulation model incorporates detailed pressure (Burn rate) analysis for different cases and various aspects of ignition delay, premixed and mixing controlled combustion rate, the injection rate affecting oxides of nitrogen and particulate matter.
Technical Paper

Experimental investigations on CO2 recovery from petrol engine exhaust using adsorption technology

2019-11-21
2019-28-2577
Energy policy reviews state that automobiles contribute 25% of the total Carbon-di-oxide (CO2) emission. The current trend in emission control techniques of automobile exhaust is to reduce CO2 emission. We know that CO2 is a greenhouse gas and it leads to global warming. Conversion of CO2 into carbon and oxygen is a difficult and energy consuming process when compared to the catalytic action of catalytic converters on CO, HC and NOX. The best way to reduce it is to capture it from the source, store it and use it for industry applications. To physically capture the CO2 from the engine exhaust, adsorbents like molecular sieves are utilized. When compared to other methods of CO2 separation, adsorption technique consumes less energy and the sieves can be regenerated, reused and recycled once it is completely saturated. In this research work, zeolite X13 was chosen as a molecular sieve to adsorb CO2 from the exhaust.
Training / Education

Introduction to Power Electronics in Automotive Applications

2019-11-04
Modern power electronics (PE) devices and circuits are now in widespread use in automotive and non-automotive applications. The purpose of this course is to give an overall introduction to the key aspects of power electronic circuits, components and design in automotive applications. Topics covered include power semiconductor devices, their characteristics and operation, and their use in power electronics circuits.
Technical Paper

Investigation in Bonding Conditions of CF/Epoxy – PP Hybrid Structures Manufactured by Hybrid Single Shot Method

2019-10-28
2019-01-2595
The hybrid single shot method is a novel manufacturing technique which allows to form and bond CF/Epoxy sheet with the injected thermoplastic in a single injection process. This process is promising to overcome the drawbacks of the traditional hybrid structure manufacturing methods by reducing the cycle time, energy consumption, tool, and machinery cost which are the concerns of automakers. In this process, polypropylene (PP) injected over the pre-heated CF/Epoxy prepreg insert. PP is widely used in automotive applications such as bumpers, dashboards, side-sills while CF/Epoxy prepreg has a great potential to enhance the mechanical properties of the hybrid component. Insert material is formed by the pressure of PP and bonded with the thermoplastic part by taking the advantages of polymer heat and the tackiness of prepreg. The final part is promising to combine the inherent properties of these two material while enhancing their weaknesses.
Technical Paper

Passenger Evacuation and Safety System for case of Crash and Drowning

2019-10-28
2019-01-2606
Vehicle submersion has one of the most astounding casualty rates of a solitary vehicle mischance and, as per drowning statistics from the World Health Organization, may contribute up to 2,000– 5,000 lives annually when all of the industrialized countries are considered. The system which will aid passengers in evacuating in scenario of drowning. The vehicle safety system will facilitate the passengers if a vehicle is submersed in water by untying the seat belt and lowering the window. The setup will have a circuit independent to the main automotive circuit and will consist of an array of 4 pressure sensors whose distance will be predetermined and will be placed in such a way that if the vehicle falls in any way possible, the pressure sensors sense the data. The system will also have a water sensor placed at the engine compartment, as at this position the water comes at a very early stage in a case of vehicle drowning and very unlikely during other case for example washing or raining.
X