Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

FEA Beyond Basics Thermal Analysis

2019-12-16
Finite Element Analysis (FEA) is a powerful and well recognized tool used in the analysis of heat transfer problems. However, FEA can only analyze solid bodies and, by necessity thermal analysis with FEA is limited to conductive heat transfer. The other two types of heat transfer: convection and radiation must by approximated by boundary conditions. Modeling all three mechanisms of heat transfer without arbitrary assumption requires a combined use of FEA and Computational Fluid Dynamics (CFD).
Technical Paper

Low Voltage Powertrain in Light Electric Vehicles

2019-11-21
2019-28-2467
Engineering objective Light Electric Vehicles (LEV) with Li-ion batteries suffer from short battery life and poor efficiency, due to low grade electronics. Battery management systems (BMS) cannot always keep the pack in balance, and after cell voltages drift, capacity of the pack diminishes and some cells may destruct, causing a fire. The paper describes a novel approach to LEV powertrains using parallel connected battery cells & control methodology that keep cells in balance naturally, thereby eliminating BMS and hence safer to use. Li-Ion cells with different chemistries can be used and superior thermal management reduces temperature rise, resulting in longer battery life. Methodology Based on the original invention by the author, the system circuit schematics was designed and simulated using OrCAD PSpice. After obtaining results from the simulation, the first prototype device was constructed and tested in laboratory.
Technical Paper

Thermal Management of Li-Ion Battery Pack using GT-SUITE

2019-11-21
2019-28-2500
Objective It is very important to simulate the battery pack being built to understand its behavior when used in applications especially Electric vehicles (EV). All Li-Ion cells are not the same. They need to be characterized before building any battery pack. Hence modeling the battery pack to simulated its performance in the actual conditions becomes important. Methodology To understand the behavior of cells in the on-field environment, they are tested at various conditions like different rates of charging/discharging, various depth of discharge (DOD), ambient temperature, etc. HPPC test is also performed on cells to derive its RC model equivalent model. GT Suite simulation software is used to model the Li-Ion cell using the testing data. Depending on the pack configuration, the modeled cell is connected in the required series and parallel configuration, to study the battery pack with respect to aging, performance and cooling requirements.
Technical Paper

Electric Vehicle Thermal Management System For Hot Climate Regions

2019-11-21
2019-28-2507
ELECTRIC VEHICLE THERMAL MANAGEMENT SYSTEM FOR HOT CLIMATE REGIONS Rana Tarun*, Yamamoto Yuji, Kumar Ritesh, Bhagatkar Shubhada Pranav Vikas India Private Limited, India Key Words Electric Vehicles (EV); Battery Thermal Management System (BTMS); COP; Electric Vehicle Thermal Management System (EVTMS); BTMS and HVAC System Integration; Thermal System Performance Comparison; Active Liquid Cooling; EV Battery Cooling Research and/or Engineering Questions/Objective Electric Vehicles is the need of time to limit global warming and it is in application at a wide scale in colder or mild climate regions where ambient temperature is limited to mild or moderate level. Its application (Heat pump, CO2) is constrained to cold climates only due to securing better COP for heating function, sacrificing cooling COP of the existing system when operated in Hot Climate Regions, thus limiting its application to nearly half of the automotive user-base.
Technical Paper

Thermal Challenges in Automotive Exhaust System through Heat Shield Insulation

2019-11-21
2019-28-2539
While advanced automotive system assemblies contribute greater value to automotive safety, reliability, emission/noise performance and comfort, they are also generating higher temperatures that can reduce the functionality and reliability of thesystem over time. Thermal management and insulation are extremely important and highly demanding in BSVI, RDE and Non-IC engine operating vehicles. Passenger vehicle and Commercial vehicle exhaust systems are facing multiple challenges such as packaging constraints, weight reduction andthermalmanagement requirements.Frugal engineering is mandatory to develop heat shield in the exhaust system with minimum heat loss. The focus of the paper is to design, develop and validate heat shield products with different variables such as design gap, insulation material, sheet metal thickness and manufacturing processes. 1D and 3D computational simulations are performed with different gaps from 3 mm to 14 mm are considered.
Technical Paper

Effect of Gasoline-Ethanol blends and CNG on GDI engine to reduce cost of vehicle ownership

2019-11-21
2019-28-2379
A major challenge for combustion development is to optimize the engine for improved fuel economy, reduce greenhouse gases. Stringent CAFÉ and emission norms require the customer to pay higher capital on vehicles. To offset the cost of ownership- cheaper and alternative energy sources are being explored. Ethanol blend with regular Gasoline and CNG are such alternative fuels. The study was carried on turbo-charged gasoline direct injection engine. The effect of ethanol on engine and vehicle performance is estimated and simulated numerically. The work is split into three stages: first the base 1D engine performance model was calibrated to match the experimental data. In parallel, vehicle level Simulink model was built and calibrated to match the NEDC cycle performance. Second, the thermal efficiency of the ethanol blend is calculated as a linear function of theoretical Otto cycle efficiency.
Technical Paper

Replacing twin electric fan radiator with Single fan radiator

2019-11-21
2019-28-2381
Downsizing is one of the crucial activities being performed by every automotive engineering organization. The main aim is to reduce – Weight, CO2 emissions and achieve cost benefit. All this is done without any compromise on performance requirement or rather with optimization of system performance. This paper evaluate one such optimization, where-in radiator assembly with two electric fan is targeted for downsizing for small commercial vehicle application. The present two fan radiator is redesigned with thinner core and use of single fan motor assembly. The performance of the heat exchanger is tested for similar conditions back to back on vehicle and optimized to get the balanced benefit in terms of weight, cooling performance and importantly cost. This all is done without any modification in vehicle interface components except electrical connector for fan. The side members and brackets design is also simplified to achieve maximum weight reduction.
Technical Paper

A mathematical expression to predict the influence of ethanol concentration on distillation behavior of gasoline-ethanol fuel blend and impact of non -ionic surfactant on E20 fuel

2019-11-21
2019-28-2386
Blending of primary alcohol in gasoline surges the vapour pressure significantly and exhibits azeotrope behaviour that effect severely on the atmospheric distillation yields. In this experiment, primary alcohol (Ethanol) were blended in varied volumetric proportion (5%, 10%, 15%, 20%, 25%) with hydrocracked gasoline, influence on volatility behaviour and distillation properties were investigated. Physical properties of this blends were investigated for vapour pressure (VP), VLI, DI and distillation which were selected to evaluate the influence of alcohol in azeotrope behaviour of the fuel mix reflected through pattern of distillation curve (temperature vs % recovery range). This fuel mix exhibited rise in recovery at 700C (E70), VP, VLI and area of azeotrope with increase in % of alcohol volume in gasoline blend.
Technical Paper

New CEC Gasoline Direct Injection Fuels Test – Comparison of Deposits and Spray Performance from New and Used injectors.

2019-11-21
2019-28-2392
The use of deposit control additives in European market gasoline is well documented for maintaining high levels of engine cleanliness and subsequent sustained fuel and emissions performance. Co-ordinating European Council (CEC) industry fuels tests have played a crucial role in helping to drive market relevant, effective and low-cost deposit control additives into European market fuels. Until now, there has not been a Gasoline Direct Injection engine test available to fuel marketers in any market globally. However, a new CEC engine test is currently being developed to address that gap. Based on an in-house VW injector coking test, it shows promise for becoming a useful tool with which to develop and measure the performance of deposit control additives. A key requirement of industry tests should be to replicate issues seen in consumer vehicles, thereby providing a platform for relevant solutions.
Technical Paper

Study of Handling Behavior of a Passenger Vehicle after addition of CNG Tank

2019-11-21
2019-28-2405
Objective The objective of this paper is to achieve a comparable handling performance from a vehicle fitted with a CNG tank to that of its gasoline counterpart. A validated CarSim model is run through standard handling evaluation tests before and after the addition of CNG tank. The simulation results are used to compare the handling characteristics of the CNG vehicle with the Base vehicle. Further these results are used to tune the suspension parameters to find an optimum set-up for the actual CNG vehicle. The final parameters are then evaluated in the actual vehicle to verify the study. Methodology A mix of Actual Mule vehicle testing backed by quik Car Sim Model. Full car model is first developed using CarSim by using the parameters of the actual base gasoline vehicle. The modeled vehicle is then tested for standard handling maneuvers such Double Lane Change, Constant Radius Constant Speed and Pulse Input.
Technical Paper

Coupled Electro-Chemical and Thermal Modeling for Cylindrical Lithium-ion Batteries

2019-11-21
2019-28-2488
The shift over of the automobile sector from the ICE to the electric drives is imminent due to arising global issues of pollution and ever rising pressure on the demand of the natural resources due to lower efficiency of the ICE drives. This has led to uprising of the Lithium-ion batteries, with addition of the burden of living to expectation of clean energy and higher efficiencies. Alongside, with limitation in the availability of the lithium-ion batteries they carry a hefty price tag with them, hence causing huddles in the research. Lack of research leads to failure of batteries and may cause life threatening situations when operating in the vehicle. In order to insight the working of the cylindrical lithium-ion batteries under different driving and environmental conditions a methodology is developed for the coupled electro-chemical and thermal phenomenon. This allows anticipating the behaviour of the battery under different conditions that influence its performance.
Technical Paper

Miniaturized and sleek protective device

2019-11-21
2019-28-2535
A miniaturized and sleek protective device M. Priyanka, Mahindra&Mahindra, India D. Boobala Krishnan*, Mahindra&Mahindra, India T.Vijayan, Mahindra& Mahindra, India Keywords-Fuse, Lightweight. Research and/or Engineering Questions/Objective: Now-a-days there is lot of advancement coming in automobiles. Earlier the electronics were used in engine and engine compartment areas. Now all hydraulics and transmission have been operated by electronics. The role of electronics like sensors, actuators increasing day by day for lifting and moving operations. With increase in electronics circuit, there is complex in wiring harness and packaging space for fuse box is premium Limitations: Limitations of placing other devices. Occupy more space and weight in the vehicle. Packing constraint due to vibration and thermal management issues. Methodology: Two different fuse of same rating can be given in one fuse and we can reduce the wire size.
Training / Education

Introduction to Power Electronics in Automotive Applications

2019-11-04
Modern power electronics (PE) devices and circuits are now in widespread use in automotive and non-automotive applications. The purpose of this course is to give an overall introduction to the key aspects of power electronic circuits, components and design in automotive applications. Topics covered include power semiconductor devices, their characteristics and operation, and their use in power electronics circuits.
Technical Paper

Analysis of the Impact of the WLTP Procedure on CO2 Emissions of Passenger Cars

2019-09-15
2019-24-0240
Until 2017, the pollutant emissions and fuel consumption Type Approval (TA) procedure for light duty vehicles in Europe was based on the New European Driving Cycle (NEDC), a test cycle performed on a chassis dynamometer. However several studies highlighted significant discrepancies in terms of CO2 emissions between the TA test and the real world, due to the limited representativeness of the actual test procedure. Therefore, the European authorities decided to introduce a new, up-to date, test procedure capable to closer represent real world driving conditions, called Worldwide Harmonized Light Vehicles Test Procedure (WLTP). This work aims to analyse the effects of the new WLTP on vehicle CO2 emissions through both experimental and simulation investigations on two different Euro 5 vehicles, a petrol and a diesel car, representatives of average European passenger cars.
Technical Paper

Knock Onset Detection Methods Evaluation by In-Cylinder Direct Observation

2019-09-15
2019-24-0233
Improvement of performance and emission of future internal combustion engine for passenger cars is mandatory during the transition period toward their substitution with electric propulsion systems. In middle time, direct injection spark ignition (DISI) engines could offer a good compromise between fuel economy and exhaust emissions. However, abnormal combustion and particularly knock and super-knock are some of the most important obstacles to the improvement of SI engines efficiency. Although knock has been studied for many years and its basic characteristics are clear, phenomena involved in its occurrence are very complex and are still worth of investigation. In particular, the definition of an absolute knock intensity and the precise determination of the knock onset are arduous and many index and methodologies has been proposed. In this work, most used methods for knock onset detection from in-cylinder pressure analyses have been considered.
Technical Paper

Effects of Prechamber on Efficiency Improvement and Emissions Reduction of a SI Engine Fuelled with Gasoline and CNG

2019-09-15
2019-24-0236
The permanent aim of the automotive industry is the further improvement of the engine efficiency and the simultaneous pollutant emissions reduction. The aim of the study was the optimization of the gasoline and compressed natural gas (CNG) combustion by means of a passive prechamber. This analysis allowed the improvement of the engine efficiency in lean-burn operation condition too. The investigation was carried out in an real small Spark Ignition (SI) engine fueled with Gasoline and CNG and equipped with a proper designed passive prechamber. In particular, Gasoline and CNG were used to analyze the effects of the prechamber on engine performance and associated pollutant emissions. Indicated Mean Effective Pressure, Heat Release Rate and Mass Burned Fraction were used to evaluate the effects on engine performance. Gaseous emissions were measured as well. Particulate Mass, Number and Size Distributions were analyzed.
Technical Paper

How to Improve SI Engine Performances by Means of Supercritical Water Injection

2019-09-15
2019-24-0235
The efficiency of ICEs is strongly affected by the heat losses of exhaust gases and engine cooling system, which account for about 60% of the heat released by combustion. Several technologies were developed to recover waste heat in ICEs, from turbochargers to ORCs, Stirling cycles and piezoelectric generation. A promising approach is to transfer the waste heat to a fluid, like water, and inject it into the combustion chamber. In such a way, the recovered energy is partially converted into mechanical work, by improving both engine efficiency and performance. In this work, the engine benefits obtained by using supercritical water as the vector to recover heat losses are analysed. Water has been chosen since it has a relatively high heat capacity and can be extracted directly from exhaust gases. A quasi-dimensional model has been implemented to simulate the ICE work cycle. Specifically, in this paper a spark ignition ICE, four-stroke with port fuel injection (PFI) has been considered.
Technical Paper

Assessment of Energy Consumption and Range in Electric Vehicles with High Efficiency HVAC Systems Based on the Tesla Expander

2019-09-15
2019-24-0244
Battery electric vehicles (BEVs) are considered one of the most promising solution to improve the sustainability of the transportation sector aiming at a progressive reduction of the dependence on fossil fuels and the associated local pollutants and CO2 emissions. Presently, the major technological obstacle to a large scale diffusion of BEVs, is the fairly low range, typically less than 300 km, as compared to classical gasoline and diesel engines. This limit becomes even more critical if the electric vehicle is operated in severe weather conditions, due to the additional energy consumption required by the cabin heating, ventilating, and air-conditioning (HVAC). Presently, the adoption of vapor-compression cycle, either in heat pump or refrigerator configuration, represents the state-of-the-art technology for HVAC systems in vehicles. Such devices typically employ an expansion valve to abruptly reduce the pressure causing the flash evaporation of the working fluid.
Technical Paper

A Coupled Lattice Boltzmann-Finite Volume Method for the Thermal Transient Analysis of an Air Cooled Li-ion Battery Module for Electric Vehicles with Porous Media Insert Modeled at REV Scales

2019-09-15
2019-24-0242
Lithium ion batteries are the most promising candidates for electric and hybrid electric vehicles, owe to their ability to store higher electrical energy. As a matter of fact, in automotive applications, these batteries undergo frequent and fast charge and discharge processes, which are associated to internal heat generation, which in turns causes temperature increase. Thermal management is therefore crucial to keep temperature in an appropriate level for safe operation and battery wear prevention. In a recent work authors have already demonstrated the capabilities of a coupled lattice Boltzmann-Finite Volume Method to deal with thermal transient of a three dimensional air-cooled Li-ion battery at different discharging rates and Reynolds numbers. Here, in order to improve discharge thermal capabilities and reduce temperature levels of the battery itself, a layer of porous medium is placed in contact with the battery so to replace a continuum solid aluminum layer.
Technical Paper

Combined Optimization of Energy and Battery Thermal Management control for a Plug-in HEV

2019-09-15
2019-24-0249
This paper presents an optimization algorithm, based on discrete dynamic programming, that aims to find the best control inputs both for energy and thermal management control strategies of a Plug-in Hybrid Electric Vehicle, in order to minimize the energy consumption over a given driving mission. The chosen vehicle has a complex P1-P4 architecture, with two electrical machines on the front axle and an additional one directly coupled with the engine, on the rear axle. In the first section the algorithm structure is presented, including the cost-function definition, the disturbances, the state variables and the control variables chosen for the optimal control problem formulation. The second section reports the simplified quasi-static analytical model of the powertrain, which has been used for the backward optimization. For this purpose, only the vehicle longitudinal dynamics have been considered.
X