Refine Your Search




Search Results

Training / Education

Hybrid and Electric Vehicle Systems

Hybrid Electric Vehicle (HEV), Plug-In Hybrid Electric Vehicle (PHEV), and Battery Electric Vehicle (BEV) technology model offerings and production volumes continue to accelerate with each model year. Advanced technology vehicle populations are significantly increasing throughout the world, making it vital for engineers, technicians, and educators to have a thorough understanding of these technologies and systems.
Training / Education

Application Development of Electric Vehicles and Hybrid Electric Vehicles Balancing Economic Objectives and Technical Requirements

This course is offered in China only. More and more stringent emission and fuel consumption regulations are pushing the automotive industry towards electrified powertrain and electrified vehicles. This is particularly evident in China, where there is an increased demand for electric (EV) and hybrid electric vehicles (HEV). Infrastructure is being built across the country for convenient charging. It must now be determined how to meet the technical targets for EV/HEV regulations under economic constraints and how to best develop the major ePowertrain components (battery and motor).
Training / Education

Fundamentals of Powertrain Design for Hybrid Electric Vehicles

Driven by high fuel prices, environmental regulations, and consumer demand, the market for hybrid electric vehicles (HEV) has experienced rapid growth. Every major automotive company produces an HEV. There are approximately fifty different HEV models on the market and over eight million HEVs already sold. In order to meet current and future demands in the HEV and PHEV markets, success will depend on engineering personnel knowing how to develop and manufacture HEV powertrains. This two day seminar will cover the fundamentals of HEV powertrain design.
Training / Education

Fuel Systems Material Selection and Compatibility with Alternative Fuels

This course will introduce the participants to the factors governing fuel-material compatibility and methods to predict and empirically determine compatibility for new alternative fuel chemistries.  By understanding the mechanisms and factors associated with chemically-induced degradation, participants will be able to assess the impact of fuel chemistry to infrastructure components, including those associated with vehicle fuel systems.  This course is unique in that it looks at compatibility from a fuel chemistry perspective, especially new fuel types such as alcohols and other biofuels.