Refine Your Search




Search Results

Training / Education

Fundamental Concepts of Turbocharging Modern Engines Current Practices and Trends

Turbocharging is rapidly becoming an integral part of many internal combustion engine systems. While it has long been a key to diesel engine performance, it is increasingly seen as an enabler in meeting many of the efficiency and performance requirements of modern automotive gasoline engines. This web seminar will discuss the basic concepts of turbocharging and air flow management of four-stroke engines. The course will explore the fundamentals of turbocharging, system design features, performance measures, and matching and selection criteria.
Training / Education

The Role of Connected and Autonomous Vehicles in Smart Cities

There is growing interest in the concept of a smart city and how these advanced technologies will improve the quality of living and make a city more attractive to visitors, commerce and industry. This course fills an unmet need for defining and explaining the relationship between connected and autonomous vehicles (CAVs) and smart city transportation. It is apparent that CAVs will achieve the best results when integrated with current and emerging urban infrastructure for transportation. This course addresses such integration from technology, organizational, policy and business model perspectives.
Technical Paper

Materials for DPF and its Cleaning Methodologies

Accumulation of ash in the Diesel Particulate Filter (DPF) with engine operating over the time is a major concern for all vehicle manufacturers, with BS VI and BS VII emission norms mandating the use of DPF. Ash deposition leads to increase in pressure drop across the filter and more frequent regeneration pattern, which can lead to sintering. It can hamper the capacity of soot loading, properties of DPF substrate material and can lower catalyst activity in case of Catalysed-DPF. Hence, removal of ash is important by defining the DPF cleaning methods. Primary source of ash is lubricant oil, taking part in the combustion. Lubricant additives like detergents and anti-wear agents are responsible for formation of metallic ash inside the DPF. Secondary source of metallic ash is fuel and engine wear out. The present paper elucidates the preparation of DPF samples including coating and canning of DPF substrates, with proper GBD.
Technical Paper

A mathematical expression to predict the influence of ethanol concentration on distillation behavior of gasoline-ethanol fuel blend and impact of non -ionic surfactant on E20 fuel

Blending of primary alcohol in gasoline surges the vapour pressure significantly and exhibits azeotrope behaviour that effect severely on the atmospheric distillation yields. In this experiment, primary alcohol (Ethanol) were blended in varied volumetric proportion (5%, 10%, 15%, 20%, 25%) with hydrocracked gasoline, influence on volatility behaviour and distillation properties were investigated. Physical properties of this blends were investigated for vapour pressure (VP), VLI, DI and distillation which were selected to evaluate the influence of alcohol in azeotrope behaviour of the fuel mix reflected through pattern of distillation curve (temperature vs % recovery range). This fuel mix exhibited rise in recovery at 700C (E70), VP, VLI and area of azeotrope with increase in % of alcohol volume in gasoline blend.
Technical Paper

Design and Development of Industrial Automotive Battery Management system

Battery operated vehicle need accurate management system because of its quick changes in State of charge (SOC) due to aggressive acceleration profiles and regenerative braking. Li-ion battery needs control over its operating area for its safe working. So, the main objective of the proposed system is to develop a BMS having algorithms to estimate accurate SOC, predict degradation parameters, balance individual cells, manage cell temperature, and provide safe area of operation defined by voltage and temperature. Proposed methodology uses Model-based Design approach wherein nonlinear behavior of battery is modeled as Equivalent Circuit Model to compute the SOC and degradation effect on battery to decide the end of life of battery, also performing inductive Active balancing on cells to equalize the charge. proposed algorithms communicate with the vehicle ECU through CAN to assist the driver for runtime estimation, time for battery swapping, Alerts.
Technical Paper

Compensation of Signal Offset, Amplitude Imbalance and Imperfect Quadrature in Rotor Position Sensor Signals for Motor Drives

In recent years, the use of the electric motors in automotive applications such as electric power steering (EPS), hybrid and electric vehicles has increased. In these fields, rotor position information plays and important role in the field- oriented control concept. It performs a transformation from the stator reference frame to the rotor reference frame and vice versa. This is nothing but the Park and inverse Park transformation. They are typically used to provide accurate absolute rotor position in high-performance motor drive systems because their robustness and reliability make them particularly suited to Automotive Environment. Hence, greater accuracy of these sensor signals is required. However, in reality, the output signals include the position error in the sensor itself as well as error in the sensor signal conditioning circuits.