Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Impact of Liquefied Petroleum Gas on the Emission Characteristics of Diesel in a Single Cylinder Four Stroke Engine

2024-02-23
2023-01-5136
The depletion of oil resource and change in global warming has led to the development of alternate energy resources. Commercially the LPG gas is used as alternate fuel for the spark ignition engine. In this work an experimental investigation is done on Liquefied Petroleum Gas (LPG) along with dual fuel mode of diesel as an alternative fuel for four stroke compression ignition engines. The primary objective of this study was to analyze the performance and the exhaust emissions of the engine using different LPG flow rate. The engine used in the study was originally a single cylinder, four-stroke compression ignition engine and minor modifications were carried out to permit the experiments to run on LPG fuel. The LPG is supplied in the suction stroke mixed with air while diesel is injected at the end of the compression stroke to initiate the combustion process. The LPG is made to flow with different levels of 3%, 6%, 9%, 12%, 18% and 21% on the volume basis with Diesel 100%.
Technical Paper

Hydrogen as a Carbon Neutral ICE Fuel for Future India

2024-01-16
2024-26-0177
Researchers are under pressure to investigate and discover ways to improve the efficacy and reduce emissions from ICE due to the depletion of energy resources and the growing concern over global warming. Hydrogen is viewed as a promising fuel and has been investigated as a potential fuel in combustion because to several desirable qualities like carbon-less content and strong flammability limitations. When equated to other alternative fuels like LPG, CNG, LNG, etc., hydrogen has inimitable qualities because it lacks carbon, making it one of the promising alternatives fuels. In order to achieve zero CO2 emissions for traffic applications in the near future, hydrogen being an automotive fuel in ICE is a solution. The ICE powered by hydrogen is prepared for that. The actual drawbacks of using hydrogen in ICE generally are manufacturing, storage, and development of the requisite infrastructure. Hydrogen can be produced in its many forms.
Technical Paper

Novel Exhaust System Architecture for Petroleum Oil Tanker Application Vehicle

2024-01-16
2024-26-0345
Petroleum Oil, Lubricants (POL) & Liquefied petroleum gas (LPG) tanker vehicles are special application segment that holds a significant Market share for commercial vehicles. These vehicles need to comply additional Safety regulations specified by Petroleum and explosives safety organization (PESO). For compliance to Rule-70, Protective heat shield on exhaust system needs to be designed and validated in order to avoid any catastrophic failure. The paper demonstrates the methodology to identify the worst case scenario for the existing commercial vehicle segment. Based on detail digital mock up (DMU) review Metallic heat shield was designed on after treatment system (ATS). The flexible heat shield was designed for exhaust pipe & joints in order to restrain the heat flow to the surrounding aggregates. After finalising design, CFD analysis was carried out to find out the thermal effects on various components and results within acceptable limits.
Technical Paper

Performance, Combustion and Emissions Evaluation of Liquid Phase Port-Injected LPG on a Single Cylinder Heavy-Duty Spark Ignited Engine

2023-04-11
2023-01-0245
Liquefied petroleum gas (LPG), like many other alternative fuels, has witnessed increased adoption in the last decade, and its use is projected to rise as stricter emissions regulations continue to be applied. However, much of its use is limited to dual fuel applications, gaseous phase injection, light-duty passenger vehicle applications, or scenarios that require conversion from gasoline engines. Therefore, to address these limitations and discover the most efficient means of harnessing its full potential, more research is required in the development of optimized fuel injection equipment for liquid port and direct injection, along with the implementation of advanced combustion strategies that will improve its thermal efficiency to the levels of conventional fuels.
Technical Paper

Effect of Spray Collapse on Mixture Preparation and Combustion Characteristics of a Spark-Ignition Heavy-Duty Diesel Optical Engine Fueled with Direct-Injected Liquefied Petroleum Gas (LPG)

2023-04-11
2023-01-0323
Liquefied Petroleum Gas (LPG), as a common alternative fuel for internal combustion engines is currently widespread in use for fleet vehicles. However, a current majority of the LPG-fueled engines, uses port-fuel injection that offers lower power density when compared to a gasoline engine of equivalent displacement volume. This is due to the lower molecular weight and higher volatility of LPG components that displaces more air in the intake charge due to the larger volume occupied by the gaseous fuel. LPG direct-injection during the closed-valve portion of the cycle can avoid displacement of intake air and can thereby help achieve comparable gasoline-engine power densities. However, under certain engine operating conditions, direct-injection sprays can collapse and lead to sub-optimal fuel-air mixing, wall-wetting, incomplete combustion, and increased pollutant emissions.
Technical Paper

Analysis of the Multi-Zone SI-Engine Model for Fuel-Flexible Engine Design Applications

2023-04-11
2023-01-0180
Development of fuel-flexible spark-ignition engines, working on CNG, LPG, hydrogen-enriched fuels or with mixtures of gaseous fuel/gasoline requires models for prediction of heat release rate, which can capture the effect of fuel composition and combustion chamber geometry on engine performance and emissions. Multi-zone models with explicit tracking of turbulent flame surface can be used for this purpose. Coupled with detailed chemical kinetic mechanisms, these models can also predict self-ignition of unburned charge ahead of the flame front. When optimizing engine performance and emissions in a fuel-flexible mode, the key question is sensitivity of the multi-zone model parameters to the properties of the fuel. In the present work, the multi-zone model of the CFR engine is developed based on Blizard-Keck eddy burn-up flame propagation approach for prediction of flame propagation and heat release rate.
Technical Paper

Concept, Loading and Calibration Effects on the Emission Performance of NG-TWC for HD Engines

2022-08-30
2022-01-1013
The environmental impact of heavy-duty vehicles powered by natural gas is considered to be less harmful compared to Diesel vehicles. Consequently, the share of vehicles using either compressed natural gas (CNG) or liquified natural gas (LNG) is expected to increase in the coming years. Since most Euro VI compliant engines operate with stoichiometric air-fuel ratio, the aftertreatment system (ATS) requires efficient three-way catalyst. With ever increasing prices on platinum group metals (PGM) over the past few years, three-way catalysts products have been exposed to wild fluctuations in cost that have had great impact on their affordability. Given that stoichiometric operation is the most widely used calibration of heavy-duty natural gas engines, the trade-off between efficiency, calibration and PGM cost must be constantly reset.
Standard

Low-Speed Vehicles

2022-08-19
CURRENT
J2358_202208
This SAE Standard defines the safety and performance requirements for low-speed vehicles (LSVs). The safety specifications in this document apply to any powered vehicle with a minimum of four wheels, a maximum level ground speed of more than 32 km/h (20 mph) but not more than 40 km/h (25 mph), and a maximum gross vehicle weight of 1361 kg (3000 pounds), that is intended for operating on designated roadways where permitted by law.
Technical Paper

A Study of Propane Combustion in a Spark-Ignited Cooperative Fuel Research (CFR) Engine

2022-03-29
2022-01-0404
Liquefied petroleum gas (LPG), whose primary composition is propane, is a promising candidate for heavy-duty vehicle applications as a diesel fuel alternative due to its CO2 reduction potential and high knock resistance. To realize diesel-like efficiencies, spark-ignited LPG engines are proposed to operate near knock-limit over a wide range of operating conditions, which necessitates an investigation of fuel-engine interactions that leads to end-gas autoignition with propane combustion. This work presents both experimental and numerical studies of stoichiometric propane combustion in a spark-ignited (SI) cooperative fuel research (CFR) engine. Engine experiments are initially conducted at different compression ratio (CR) values, and the effects of CR on engine combustion are characterized.
Technical Paper

The Impact of LPG Composition on Performance, Emissions, and Combustion Characteristics of a Pre-mixed Spark-Ignited CFR Engine

2022-03-29
2022-01-0476
Research on alternative fuels has made significant progress as demands for cleaner and more efficient engine operation intensifies. Liquefied petroleum gas (LPG) can offer a potential alternative fuel route in the Diesel fuel dominated heavy-duty transportation sector due to its low cost, high anti-knock limit relative to gasoline, and reduced emission levels. In this work, experimental investigations are performed to study the effects of LPG compositions on performance, emissions, and combustion behavior of a spark-ignited (SI) cooperative fuel research (CFR) engine under stoichiometric conditions. Four LPG blends (chemically pure propane, a representative US blend, HD-5, and a representative European blend) representing the present LPG market are chosen. The impact of fuel composition is studied under different compression ratios (CR), ranging from 7:1 to 10:1 with one-unit increments, and at constant engine speed, intake manifold air pressure (IMAP) and 50% burn crank angle (CA50).
Technical Paper

Bulk Spray and Individual Plume Characterization of LPG and Iso-Octane Sprays at Engine-Like Conditions

2022-03-29
2022-01-0497
This study presents experimental and numerical examination of directly injected (DI) propane and iso-octane, surrogates for liquified petroleum gas (LPG) and gasoline, respectively, at various engine like conditions with the overall objective to establish the baseline with regards to fuel delivery required for future high efficiency DI-LPG fueled heavy-duty engines. Sprays for both iso-octane and propane were characterized and the results from the optical diagnostic techniques including high-speed Schlieren and planar Mie scattering imaging were applied to differentiate the liquid-phase regions and the bulk spray phenomenon from single plume behaviors. The experimental results, coupled with high-fidelity internal nozzle-flow simulations were then used to define best practices in CFD Lagrangian spray models.
Journal Article

Detailed Combustion Analysis of a Supercharged Double-Fueled Spark Ignition Engine

2021-11-10
Abstract The main goal of researches in the field of automotive engineering is to obtain a large-scale implementation of low- or zero-emissions vehicles in order to substantially reduce air pollution in urban areas. A fundamental step toward this green transition is represented by the improvement of current internal combustion (IC) engines in terms of fuel economy and pollutant emissions. The spark ignition (SI) engines of modern light-duty vehicles are supercharged, down-sized, and equipped with direct injection. Gaseous fuels, such as liquefied petroleum gas (LPG) or natural gas (NG), proved to be a valid alternative to gasoline in order to reduce pollutant emissions and increase fuel economy.
Journal Article

Performance Comparison of LPG and Gasoline in an Engine Configured for EGR-Loop Catalytic Reforming

2021-09-21
2021-01-1158
In prior work, the EGR loop catalytic reforming strategy developed by ORNL has been shown to provide a relative brake engine efficiency increase of more than 6% by minimizing the thermodynamic expense of the reforming processes, and in some cases achieving thermochemical recuperation (TCR), a form of waste heat recovery where waste heat is converted to usable chemical energy. In doing so, the EGR dilution limit was extended beyond 35% under stoichiometric conditions. In this investigation, a Microlith®-based metal-supported reforming catalyst (developed by Precision Combustion, Inc. (PCI)) was used to reform the parent fuel in a thermodynamically efficient manner into products rich in H2 and CO. We were able to expand the speed and load ranges relative to previous investigations: from 1,500 to 2,500 rpm, and from 2 to 14 bar break mean effective pressure (BMEP).
Technical Paper

LPG and Prechamber as Enabler for Highly Performant and Efficient Combustion Processes Under Stoichiometric Conditions

2021-09-05
2021-24-0032
The European Union has defined legally binding CO2-fleet targets for new cars until 2030. Therefore, improvement of fuel economy and carbon dioxide emission reduction is becoming one of the most important issues for the car manufacturers. Today’s conventional car powertrain systems are reaching their technical limits and will not be able to meet future CO2 targets without further improvement in combustion efficiency, using low carbon fuels (LCF), and at least mild electrification. This paper demonstrates a highly efficient and performant combustion engine concept with a passive pre-chamber spark plug, operating at stoichiometric conditions and powered with liquefied petroleum gas (LPG). Even from fossil origin, LPG features many advantages such as low carbon/hydrogen ratio, low price and broad availability. In future, it can be produced from renewables and it is in liquid state under relatively low pressures, allowing the use of conventional injection and fuel supply components.
Journal Article

Effects of Hydroxy Gas Addition on the Performance and Emission Characteristics of Liquefied Petroleum Gas-Powered Lean-Operated Spark-Ignition Engine

2021-04-13
Abstract The effect of hydroxy (HHO) gas or Brown gas addition as a secondary fuel on the performance, exhaust emissions, and lean operation limit of a spark-ignition (SI) engine was experimentally investigated in this study. The tests were performed on a single-cylinder liquefied petroleum gas (LPG)-fueled four-stroke lean-operated SI engine. HHO gas was obtained by electrolysis using an electric current to dissociate the water molecules. The generated HHO gas was directly sent into the cylinder by mixing with the fresh air in the intake manifold without any modification and the need for storage tanks. The results showed that HHO gas addition increased the brake thermal efficiency (BTE) by 12.97% and decreased the brake-specific fuel consumption (BSFC) by 11.17%. The exhaust emission results showed that HHO gas enrichment caused an 8.72% reduction in carbon monoxide (CO) and a 21% reduction in unburned hydrocarbon (HC), while a 6.42% increment in nitrogen oxides (NOx).
Journal Article

Knock Detection Method for Dual-Fuel Compression Ignition Engines Based on Block Vibration Analysis

2021-01-11
Abstract A new knock detection method based on block vibration analysis, specially developed for dual-fuel compression ignition (CI) engines, is presented in this work. Experimental tests were carried out in a four-cylinder CI engine at full and 60% load, running at 2000, 2500, and 3200 rpm with different amounts of hydrogen and liquefied petroleum gas (LPG) injected in the air inlet hose. Fuel flow was increased in approximately 10% energy share steps until knock was detected for both fuels. The maximum substitutions at full and 60% load were 38%, 54% for hydrogen, and 57%, 63% for LPG, respectively. The component of the block vibration signal that is sensitive to knock was determined by studying the block’s resonant frequency, the influence of valve closing impacts, and comparing the block vibration recorded with knocking and non-knocking combustion.
Journal Article

Exhaust Emissions of an Engine Fuelled by Petrol and Liquefied Petroleum Gas with Control Algorithm Adjustment

2020-10-12
Abstract It has been shown that appropriate regulation of parameters of the gas supply system control algorithm allows to reduce the emission of selected components of the exhaust gas (carbon monoxide [CO], hydrocarbon [HC], and oxides of nitrogen [NOx]). The test engine met the Euro 6 standard on petrol and was equipped with an additional alternative multipoint fuelling system for multipoint injection (MPI) of the gaseous phase liquefied petroleum gas (LPG). The tests are comparative in nature. The first test to compare LPG petrol fuelling was carried out in the New European Driving Cycle (NEDC) where small differences in emissions were shown. The second part of the test compared emissions in the Worldwide harmonized Light vehicles Test Cycle (WLTC), wherein the initial phase there was a significant difference in emissions to the detriment of the gas supply. An innovative approach was therefore proposed to correct settings in the gas system control algorithm.
Journal Article

Processing of Glass Fibre Reinforced Composite LPG Cylinder through Filament Winding Technique and Characterization

2020-09-25
2020-28-0450
The present work focuses on the processing and characterization of LPG cylinder made up of glass fibre reinforced composite (GFRC) material. The commercial steel LPG cylinder is difficult to handle due to more weight and easily corroded with moisture environment. To overcome this problem, composite material which has high specific stiffness, high specific strength, less weight and high corrosion resistance to moisture is used to fabricate the LPG cylinder. In this investigation, the LPG cylinder with dimensions of commercial 5 kg Steel LPG cylinder is made by filament winding technique. While fabricating, the fibres are wounded on the plastic inner container which is used as gas-tight in-liner. The specimens are prepared from the fabricated composite LPG cylinder. The material properties of composite materials are evaluated by the tensile test, compression test, flexural test, density test and impact test.
Technical Paper

Analysis of Cold Start Emission from Light Duty Vehicles Fueled with Gasoline and LPG for Selected Ambient Temperatures

2020-09-15
2020-01-2207
The exhaust emission from modern vehicles is reduced by catalysts except for cold start phase. The difference in emissions for unheated catalysts is large and can reach several times higher than the emission for the heated thermal state of the engine. In the dyno tests, the analysis of the duration and volume of the emissions for harmful exhaust components: CO2 (carbon dioxide), CO (carbon monoxide), THC (total hydrocarbons), NOx (nitrogen oxides) at various climatic chamber operating temperatures, i.e. 0-30oC, for a vehicle meeting the EURO3 and EURO6 standards was performed. Stationary analyzers AVL AMA i60 were used to measure the emissions. The article presents the differences in the emissions for the cold-start phase of engine operation and the duration of time passing to a heated engine for vehicles powered by petrol and LPG (liquefied petroleum gas). The work shows the analysis of modal emissions as well as bag emission.
Technical Paper

Improving the Processes of Thermal Preparation of an Automobile Engine with Petrol and Gas Supply Systems (Vehicle Engine with Petrol and LPG Supplying Systems)

2020-09-15
2020-01-2031
This article deals with the features of the thermal preparation system application on automobile engine, the heating of which to operating temperatures is carried out on petrol, and subsequent operation on liquefied petroleum gas. The main element of the heat treatment system is a phase-transfer heat accumulator, the task of which is to minimize the engine warm-up time and, therefore, reduce petrol consumption on warm-up modes. An information system has been developed (is being used) for remote monitoring and control of the thermal preparation processes of an engine with a thermal accumulator. The results of experimental studies on a passenger vehicle engine under various operating conditions have confirmed the effectiveness of using a phase-transfer heat accumulator to reduce the heating time of the coolant and reduce the consumption of petrol to warm up the engine.
X