Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

SOME INLAND WATERWAY TRANSPORTATION PROBLEMS

1920-01-01
200055
The author states that the problems of inland waterway transportation are more a matter of public education than anything else and that, given the waterway on which suitable boats can be navigated, the problems of the vessels themselves and their methods of propulsion are by no means difficult. Referring to the New York State Barge Canal, the thought passes to the problem of motive power for canal barges. The author believes the internal-combustion engine in some form will be found eventually to be the most desirable, although at present little thought is being given to any power other than steam; the author discusses what form of this type of engine would be most suitable. Canal-barge engine requirements are considered at some length and the necessity of positive engine reversibility is emphasized, the conditions affecting this being outlined. The amount of power necessary for a canal barge is discussed, the governing factors being outlined.
Technical Paper

COMBUSTION OF FUELS IN INTERNAL COMBUSTION ENGINES

1920-01-01
200069
The automotive industry was considered a mechanical one until fuel difficulties caused a realization that the internal-combustion engine is only a piece of apparatus for the effective utilization of chemistry. The only great cloud on the horizon of the automotive industry today is the fuel problem, one way to dispel it being to increase the supply and the other to make the automotive device do what it has been designed to do. The author reviews the production of oil and of automotive apparatus, considers the available fuels and states the two distinct parts of the fuel problem as being first carburetion and distribution, external to the engine and one of purely physical relationship, and, second, the combustion of fuel inside the engine cylinder. The subjects of regulating combustion by additions to the fuel, the chemistry of fuels and the burning of heavy fuels are discussed at length.
Technical Paper

SAVING FUEL WITH THE CARBURETER

1920-01-01
200056
Two series of tests were made in 1918; one to determine whether the mixture giving best economy and that giving maximum power is a constant quality for all conditions of speed and power output; the other to ascertain what effect changes in the temperature of the fuel-intake system have on the quality of the mixture which gives the maximum power and that which gives best economy. The standard United States ambulance four-cylinder engine was used for these tests, its carbureter having a primary air passage, a primary fuel-jet, an auxiliary air passage with an air-valve and a secondary fuel-jet, the manifold being cast integrally with the cylinder block and a curved riser conducting the fuel mixture from the carbureter to it. The testing methods and fuel consumption measurements are described.
Technical Paper

THE DIESEL ENGINE OF THE GERMAN SUBMARINE U-117

1920-01-01
200020
Shortly after the armistice, the author witnessed the surrender of the German submarine fleet and subsequently inspected 40 of the 170 submarines first surrendered. He also inspected 185 submarines in Germany. Practically all the engines were of the Machinenfabrik Ausburg-Nürnburg four-cycle Diesel type, of 300, 550, 1200 and 1750 hp. There were but five Krupp two-cycle engines. Brief comment is made regarding the design of these engines. The author, who supervised the dismantling of the German submarine U-117 at the Philadelphia Navy Yard, gives a detailed description of its engines, which were of the 1200-hp. type. This includes comments regarding materials, design details, valve mechanism, starting and reversing gear, lubrication, cooling and accuracy of workmanship. The air-compression system and some of its auxiliaries are outlined.
Technical Paper

COMMENTS UPON FUELS, LUBRICANTS, ENGINE AND PISTON PERFORMANCE

1920-01-01
200019
The comments the author makes regarding fuels, lubricants and engine and piston performance are suggested by pertinent points appearing in papers presented at the 1920 Annual Meeting of the Society. A list of these papers is given. The subjects upon which comments are made include salability of a car, engine balancing, pressure and chemical constitution of gasoline at the instant of ignition, the use of aluminum pistons, the success attending the various departures from orthodox construction, gasoline deposition in the crankcase and cleanness of design, as stated by Mr. Pomeroy; the performance of a finely atomized mixture of liquid gasoline and air and the contamination of lubricating oil by the fuel which passes the pistons, as discussed by Mr. Vincent; the dilution of lubricating oil in engine crankcases and the saving that can be effected by its prevention, as mentioned by Mr. Kramer; and tight-fitting pistons and special rings as presented by Mr. Gunn.
Technical Paper

ADAPTING TRUCK AND TRACTOR ENGINES TO MOTOR-BOAT USE

1920-01-01
200021
The automobile engine, as used in passenger cars and a large percentage of trucks, is not adapted to use in motor boats. It is not built substantially enough for this, inasmuch as the power output of the motor-boat engine, except during starting or landing, is always 100 per cent. In view of this and because tractor, truck and marine engines are of the same family, it appears that if a truck or tractor engine were made with 100 per cent continuous power output capacity it would be satisfactory for marine use. The author describes and illustrates a tractor engine modified for marine use. The lubrication system of this engine is explained. The respective merits of right and left-hand engines are discussed. It is stated in a twin-screw boat that it is unnecessary to have both engines run out-board; that both can turn in the same direction without causing material difference in results.
Technical Paper

THE HEAT-TREATING OF BRAZED FITTINGS FOR AIRCRAFT

1920-01-01
200022
A tendency exists in most shops to assume that brazed joints cannot be successfully heat-treated. As a consequence, many fittings used in aircraft work and assembled by brazing smaller parts together are finished and installed without being heat-treated after the brazing operation. This practice causes parts to be used that not only do not develop the available strength of the material, but which are in some cases, under internal stress due to the heating in the brazing operation. Recent experiments made at the Naval Aircraft Factory show that the assumption mentioned is entirely erroneous. The author considers this matter with a view to specifying the use of steels and brazing spelters which will permit the subsequent or perhaps the simultaneous heat-treatment of the parts.
Technical Paper

PREIGNITION AND SPARK-PLUGS

1920-01-01
200015
The author proposes to determine what features of spark-plug construction cause preignition and how this preignition manifests itself. To this end observed conditions on an Hispano-Suiza aviation engine following 4 hr. of an intended 6-hr. run are reported, with supplementary tests and observations. This resulted in experiments made to determine the cause of preignition, using spark-plugs constructed so that different features of their design were exaggerated. Illustrations of these plugs are shown and the results obtained from their tests are described. The different observed peculiarities are then stated, analyzed and compared with normal spark-plug performance. The experiments serve as a means of identification of special forms of preignition and as an indication of the abnormally high temperatures to which valves and combustion-chamber walls are thus subjected.
Technical Paper

NEEDS IN ENGINE DESIGN

1920-01-01
200016
The author advocates the use of the fragile aluminum crankcase as a spacer, running crankshaft bearing bolts clear through the crankcase and the cylinder base, so tieing the bearings firmly to the castiron cylinder-block and using the through-bolts also as holding-down studs for the cylinders. The results of experiments on six-cylinder engines with reference to the satisfactory utilization of engine fuel now on the market are then presented. The problem is how to carry the fuel mixture in a proper gaseous state from the carbureter into the cylinder without having the fuel deposited out meanwhile. The power developed at engine speeds of 400 to 2800 r.p.m., with and without hot air applied to the carbureter, is tabulated, the proper location of the intake manifold is discussed, and the necessary features of a satisfactory engine to utilize present-day fuel are summarized.
Technical Paper

ADAPTING ENGINES TO THE USE OF AVAILABLE FUELS

1920-01-01
200017
Some of the salient facts regarding the character of the engine fuel marketed within the past few years are shown in accompanying curves. The desirability of operating present-day experimental cars with fuel that is the equivalent of fuel that will probably be generally marketed two years hence is stated and various methods of meeting the fuel problem are then examined. A dry fuel mixture is desired to prevent spark-plug fouling, to improve engine performance in cold weather and to minimize lubricating oil contamination by fuel which passes the pistons. Various methods of obtaining a dry mixture are then discussed, leading to a detailed description of the construction and operation of a device specially designed to accomplish such a result more successfully.
Technical Paper

TRACTOR PLOWING SPEEDS

1920-01-01
200018
Among the problems before the designers of plowing tractors, none is more important than that of ascertaining the most economical plowing speed at which to operate a tractor to give first-class work at a minimum cost. The solution must be right from both the maunfacturer's and the farmer's standpoints. A variety of soil resistances, different speeds, widths and depth of cut, types and shapes of plows must be considered. The recently published draft data of Professor Davidson of Iowa State College and those of the Kansas State Agricultural College are used. They indicate in general that in each kind of soil, whether heavy or light, with speed increase there is a corresponding increase of draft, the amount of which is dependent upon the speed, shape of plow and nature of soil. The further experiments made relative to increased speed and draft and to the area plowed at different speeds are described and discussed, the results being shown by charts.
Technical Paper

HIGH-SPEED INDICATORS

1920-01-01
200011
The indicator was an important factor in the early development of the internal-combustion engine when engine speeds were low, but on high-speed engines such indicators were unable to reliably reproduce records because of the inertia effects of the moving part of the pressure element. The first need is for a purely qualitative indicator of the so-called optical type, to secure a complete and instantaneous mental picture of the pressure events of the cycle; the second need is for a purely quantitative instrument for obtaining an exact record of pressures. The common requirements for both are that the indicator timing shall correctly follow the positions of the crank and that the pressure recorded shall agree with the pressures developed within the combustion space. Following a discussion of these requirements, the author then describes the demonstration made of two high-speed indicators, inclusive of various illustrations that show the apparatus, and comments upon its performance.
Technical Paper

COMPOSITE FUELS

1920-01-01
200012
The progressive decrease in the volatility of gasoline due to the insufficiency of the high-volatility supply has developed a problem of efficient utilization of internal-combustion-engine fuel that requires coordination between the engine and its fuel and a technical as well as economic adjustment between supply and demand. The three channels through which this adjustment tends toward accomplishment are stated and commented upon, consideration then passing to the three main resources from which the components of composite fuels can be drawn.
Technical Paper

TENDENCIES IN ENGINE DESIGN

1920-01-01
200013
War service demanded that gasoline engines be absolutely reliable in minor as well as major details of construction; lightness of construction was second in importance. The war scope of the gasoline engine was so wide that engineers were forced toward the solution of unexpected and unrealized problems and a vast amount of valuable data resulted. This information includes recent determination of the quantitative nature of the factors governing thermodynamic performance in respect to mean effective pressure, compression ratio and the effect of volumetric efficiency; mechanical performance in regard to mechanical efficiency and internal friction; and engine balancing.
Technical Paper

STEAM AUTOMOTIVE SYSTEM

1920-01-01
200014
It is stated that the general performance of the steam-propelled automobile has never been equalled by that of the most highly-developed multiple-cylinder gasoline cars and that it is significant that no innovation in the gasoline car has yet been able to give steam-car performance. This led to an effort to remove the troublesome features of the steam car, rather than to complicate the gasoline car further by attempting to make it duplicate steam-car performance. The paper describes in detail the steam automotive system developed by the author and E. C. Newcomb, including the boiler, the combustion system and its control, the engine and the condensing system.
Technical Paper

SUPERCHARGERS AND SUPERCHARGING ENGINES

1920-01-01
200007
If at great altitudes air is supplied to the carbureter of an engine at sea-level pressure, the power developed becomes approximately the same as when the engine is running at sea level. The low atmospheric pressure and density at great altitudes offer greatly reduced resistance to high airplane speeds; hence the same power that will drive a plane at a given speed at sea level will drive it much faster at great altitudes and with approximately the same consumption of fuel per horsepower-hour. Supercharging means forcing in a charge of greater volume than that normally drawn into the cylinders by the suction of the pistons. Superchargers usually take the form of a mechanical blower or pump and the various forms of supercharger are mentioned and commented upon. Questions regarding the best location for the carbureter in supercharged engines are then considered.
Technical Paper

DILUTION OF ENGINE LUBRICANTS BY FUEL

1920-01-01
200008
Engine lubrication troubles resulting from the dilution of the lubricating oil in engine crankcases appear with increasing frequency, particularly where economy demands the use of cheap grades of fuel. Unless a lubricant not miscible with present engine fuels can be produced, lubricants will steadily decrease in viscosity whenever fuel finds its way into them. The most satisfactory remedy is to prevent dilution of the oil. To prevent absorption of the fuel by the oil is a problem of engine design. In experiments made by the Bureau of Standards the absorption of fuel vapors at average engine temperatures was found to be negligible; further experiments and oil tests showed no indication of dilution due to cracking, with representative refiners' products from typical crude oils available in this country.
Technical Paper

THE MEASUREMENT OF VEHICLE VIBRATIONS

1920-01-01
200009
The five fundamental criteria of the performance of a motor vehicle as a whole are stated. Riding comfort is investigated at length with a view to determining methods of measurement of the two classes of vehicle vibrations that affect the riding qualities of a car, so that suitable springs can be designed to overcome them. The underlying principles of the seismograph are utilized in designing a specialized form of this instrument for measuring vehicle vibrations, the general design considerations are stated and a detailed description is given. This is followed by an explanation of the methods used in analyzing the curves obtained, thus making possible a standardized measurement of riding comfort. The factors determining riding comfort are then analyzed in connection with spring-development work, the most important are summarized and the preliminary experimental results of those directly determined by the seismograph are outlined.
Technical Paper

THE VELOCITY OF FLAME PROPAGATION IN ENGINE CYLINDERS

1920-01-01
200010
Flame propagation has received much attention, but few results directly applicable to operating conditions have been obtained. The paper describes a method devised for measuring the rate of flame propagation in gaseous mixtures and some experiments made to coordinate the phenomena with the important factors entering into engine operation; it depends upon the fact that bodies at a high temperature ionize the space about them, the bodies being either inert substances or burning gases. Experiments were made which showed that across a spark-gap in an atmosphere of compressed gas, as in an engine cylinder, a potential difference can be maintained which is just below the breakdown potential in the compressed gas before ignition but which is sufficient to arc the gap after ignition has taken place and the flame has supplied ionization. These experiments and the recording of the results photographically are described.
Technical Paper

SPRINGS AND SPRING SUSPENSIONS

1920-01-01
200004
The chief factors affecting the riding quality of a motor vehicle are spring deflection, or amplitude; periodicity, or the number of vibrations per second; and the proportion of the sprung to the unsprung weight. Other factors are the wheelbase, the tread, the height of the center of gravity of the car and the effect of the front springs on the rear ones. The three main factors are considered at some length, various experiments being described and illustrated by diagrams. Spring inertia and the fundamentals of periodicity are then investigated, by experiments and mathematical analyses, in considerable detail.
X