Refine Your Search

Topic

Search Results

Viewing 1 to 8 of 8
Technical Paper

Cyber Security in the Automotive Domain – An Overview

2017-03-28
2017-01-1652
Driven by the growing internet and remote connectivity of automobiles, combined with the emerging trend to automated driving, the importance of security for automotive systems is massively increasing. Although cyber security is a common part of daily routines in the traditional IT domain, necessary security mechanisms are not yet widely applied in the vehicles. At first glance, this may not appear to be a problem as there are lots of solutions from other domains, which potentially could be re-used. But substantial differences compared to an automotive environment have to be taken into account, drastically reducing the possibilities for simple reuse. Our contribution is to address automotive electronics engineers who are confronted with security requirements. Therefore, it will firstly provide some basic knowledge about IT security and subsequently present a selection of automotive specific security use cases.
Technical Paper

Cockpit Module Analysis Using Poroelastic Finite Elements

2014-06-30
2014-01-2078
Strategies for weight reduction have driven the noise treatment advanced developments with a great success considering the already mastered weight decreases observed in the last years in the automotive industry. This is typically the case for all soft trims parts. In the early 2010's a typical european B-segment car soft trims weights indeed 30 to 40% less than in the early 2000's years. The main driver behind such a gap has been to combine insulation and absorption properties on a single part while increasing the number of layers. This product-process evolution was conducted using a significant improvement in the simulation capacities. In that sense, several studies presenting very good correlation results between Transmission Loss measurements and finite elements simulations on dashboard or floor insulators were presented. One may consider that those kinds of parts have already achieved a considerable improvement in performance.
Technical Paper

Hardware Based Paravirtualization: Simplifying the Co-Hosting of Legacy Code for Mixed Criticality Applications

2013-04-08
2013-01-0186
The increased pressure for power, space, and cost reduction in automotive applications together with the availability of high performance, automotive qualified multicore microcontrollers has lead to the ability to engineer Domain Controller ECUs that can host several separate applications in parallel. The standard automotive constraints however still apply, such as use of AUTOSAR operating system, support for legacy code, hosting OEM supplied code and the ability to determine warranty issues and responsibilities between a group of Tier 1 and Tier 2 vendors who all provide Intellectual Property to the final production ECU. Requirements for safety relevant applications add even more complexity, which in most current approaches demand a reconfiguration of all basic software layers and a major effort to redesign parts of the application code to enable co-existence on the same hardware platform. This paper outlines the conflicting requirements of hosting multiple applications.
Video

ARAMiS - Taming Multicores for Safe Transportation

2012-05-17
Multicore processor are well established in classical and tablet personal computers for some year. Such processors use more then one central core for computation and allow to integrate more computational power with smaller costs. However more than 90% of all processors worldwide are not placed in classical IT but are empedded in bigger systems like in modern vehicles or airplanes. Such systems face a very high demand in terms of safety, security an reliability which hinders the use of multicores in such systems. The funded project ARAMiS faces these demands and has the goal to enable the usability of multicore systems in the domains automotive and avionics, as well as later also railway. ARAMiS is the basis for higher traffic safety, traffic efficiency and comfort.
Technical Paper

Safety Element out of Context - A Practical Approach

2012-04-16
2012-01-0033
ISO 26262 is the actual standard for Functional Safety of automotive E/E (Electric/Electronic) systems. One of the challenges in the application of the standard is the distribution of safety related activities among the participants in the supply chain. In this paper, the concept of a Safety Element out of Context (SEooC) development will be analyzed showing its current problematic aspects and difficulties in implementing such an approach in a concrete typical automotive development flow with different participants (e.g. from OEM, tier 1 to semiconductor supplier) in the supply chain. The discussed aspects focus on the functional safety requirements of generic hardware and software development across the supply chain where the final integration of the developed element is not known at design time and therefore an assumption based mechanism shall be used.
Journal Article

Obtaining Diagnostic Coverage Metrics Using Rapid Prototyping of Multicore Systems

2011-04-12
2011-01-1007
With the introduction of the ISO26262 automotive safety standard there is a burden of proof to show that the processing elements in embedded microcontroller hardware are capable of supporting a certain diagnostic coverage level, depending on the required Automotive Safety Integrity Level (ASIL). The current mechanisms used to provide actual metrics of the Built-in Self Tests (BIST) and Lock Step comparators use Register Transfer Level (RTL) simulations of the internal processing elements which force faults into individual nodes of the design and collect diagnostic coverage results. Although this mechanism is robust, it can only be performed by semiconductor suppliers and is costly. This paper describes a new solution whereby the microcontroller is synthesized into a large Field Programmable Gate Array (FPGA) with a test controller on the outside.
Technical Paper

Customer Orientation in the Design Process of an Electromechanical Parking Brake - A Vehicle Manufacturer's Point of View

2003-10-19
2003-01-3310
The ever increasing use of electronics in modern vehicles has not stopped at comfort systems such as power seats and power windows. Every conventional system that requires operating force will eventually be replaced by a self-powered version. One such item is the electromechanical parking brake of the new Audi A8, offering a host of new features. Despite the many options for new functions, it is nevertheless important to keep the driver in mind. Being engineers, one tends to overlook that not all customers share our excitement for gadgets and overly complicated technical features.
Technical Paper

The Audi Aeroacoustic Wind Tunnel: Final Design and First Operational Experience

2000-03-06
2000-01-0868
Audi's new full scale aeroacoustic wind tunnel is under full operation now. The new facility is designed for full scale automotive testing of aerodynamics and aeroacoustics for vehicles up to 3 m2 frontal area at wind speeds up to 300 kph. The highlights are the unique ground simulation system with boundary layer suction and a 5-belt-system, and the extremely low background noise of only 60 dB(A) at 160 kph. First the background of the project is illustrated and the need for the special features of the tunnel is deduced form the industrial requirements. Then an overview of the facility design is given with a detailed description of the key technical components. The calibration of the self-correcting test section will be discussed and the physical background for it will be examined more closely. For the calibrated wind tunnel the results of two correlation tests including open jet as well as closed wall wind tunnels show a reasonable conformity.
X