Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Thermal Management System for Battery Electric Heavy-Duty Trucks

2024-07-02
2024-01-2971
On the path to decarbonizing road transport, electric commercial vehicles will play a significant role. The first applications were directed to the smaller trucks for distribution traffic with relatively moderate driving and range requirements, but meanwhile, the first generation of a complete portfolio of truck sizes is developed and available on the market. In these early applications, many compromises were accepted to overcome component availability, but meanwhile, the supply chain can address the specific needs of electric trucks. With that, the optimization towards higher usability and lower costs can be moved to the next level. Especially for long-haul trucks, efficiency is a driving factor for the total costs of ownership. Besides the propulsion system, all other systems must be optimized for higher efficiency. This includes thermal management since the thermal management components consume energy and have a direct impact on the driving range.
Technical Paper

Decarbonizing Light Vehicles with Hydrous Ethanol: Performance Analysis of a Range-Extended PHEV Using Experimental and Simulation Techniques

2024-04-09
2024-01-2161
Plug-in hybrid electric vehicles have the potential of combining the benefits of electric vehicle in terms of low emissions and internal combustion engine vehicles in terms of vehicle range. With the addition of a renewable fuel, the CO2 potential reduction increase even more. The last trends for PHEV are small combustion engine known as range extender, with battery package between full hybrid and electric powertrains. Thus, allowing an improvement in vehicle’s range, reducing battery materials while converting fuel energy through a highly efficient path. Although these vehicles have been proved to be a convenient strategy for decarbonizing the light vehicles, the use of alternative fuels is poorly studied. In this work, hydrous ethanol is chosen because is already available in some countries, such as USA and Brazil, and have an ultra-low well-to-tank CO2 emission.
Technical Paper

Virtual Test Bed (VTB) Based Engine Calibration: Unique Approach to Ensure Engine Component Protection & to Meet WNTE in Different Environment Condition for Medium Duty Diesel Engine

2024-01-16
2024-26-0045
In view of BS-VI emission norms implementation in Commercial Vehicle (CV) application, the emissions are not only confirmed in standard condition but also in non-standard condition including different combinations of ambient temperature and pressure especially for checking the emission in WNTE cycle. However, achieving the emissions in different environmental conditions require physical emission calibration to be performed in those conditions. Hence, engine must be calibrated in climatic test chambers to ensure emission in different climatic conditions leading to multifold increase in the calibration effort. With addition of BS-VI emission regulation, After Treatment System (ATS) is a mandatory requirement to reduce the tail pipe emissions. Efficient functioning of ATS requires enough heating to convert the engine out emissions. Vehicle level Real Drive Emission (RDE) measurement without Conformity Factor (CF) limitation are added as an important legislative requirement.
Technical Paper

The Effect of Different Air Path Based ATS Thermal Management Strategy on a Non- EGR Medium Duty Diesel Engine’s Performance and Emissions

2024-01-16
2024-26-0038
The major objective of this paper is to develop thermal management strategy targeting optimum performance of Selective Catalytic Reduction (SCR) catalyst in a Medium Duty Diesel Engine performing in BS6 emission cycles. In the current scenario, the Emissions Norms are becoming more stringent and with the introduction of Real Drive Emission Test (RDE) and WHTC test comprising of both cold and hot phase, there is a need to develop techniques and strategies which are quick to respond in real time to cope with emission limit especially NOx. SCR seems to be suitable solution in reducing NOx in real time. However, there are limitations to SCR operating conditions, the major being the dosing release conditions which defines the gas temperature at which DEF (Diesel Exhaust Fluid) can be injected as DEF injection at lower gas temperatures than dosing release will lead to Urea deposit formation and will significantly hamper the SCR performance.
Technical Paper

Multiphysics Simulation Supporting Systems Engineering for Fuel Cell Vehicles

2024-01-16
2024-26-0244
Legislative challenges, changing customer needs and the opportunities opened-up by electrification are the major driving forces in today’s automotive industry. Fuel cell vehicles offer the potential for CO2 emission free mobility, especially attractive for heavy duty long-haul range application. The development of key components of fuel cell powered vehicles, namely the fuel cell stack itself as well as the related hydrogen/air supply and thermal management sub-systems, goes hand in hand with various challenges regarding performance, lifetime and safety. The proper layout and sizing of the stack and the related fuel and air supply system components, as well as the suitable dimensioning of the cooling system, are decisive for the overall system efficiency and achievable lifetime.
Technical Paper

Flame morphology of hydrous ethanol combustion under EGR dilution and port fuel injection in a spark ignition optical engine

2023-02-10
2022-36-0041
Hybrid vehicles have been developed for improving efficiency and the consequent reduction of fossil fuels consumption in the transportation sector. The complexity of such vehicles allows for countless architectures, being one of them the range extender concept, which corresponds to an electrically powered vehicle equipped with a small combustion engine to improve the vehicle range. In the literature there is no current consensus whether range extenders should adopt simple engine technology aiming at cost reduction, or should they incorporate complex systems in order to achieve a remarkable thermal efficiency and low emissions. In the context of exploring the advanced options for range extenders, the combustion characterization is a fundamental step, which provides information on combustion behavior for several fuel types under a wide range of combustion modes. That information can both yield useful insights for engine development and provide combustion datasets for engine simulation.
Technical Paper

Time-Domain Simulation Approach for the Electromagnetically Excited Vibrations of Squirrel-Cage Induction Machine Drives under Pulse-Width Modulated Supply

2022-06-15
2022-01-0932
In this paper, the multi-physical simulation workflow from electromagnetics to structural dynamics for a squirrel-cage induction machine is explored. In electromagnetic simulations, local forces and rotor torque are calculated for specific speed-torque operation points. In order to consider non-linearities and interaction with control system as well as transmission, time-domain simulations are carried out. For induction machines, the computational effort with full transient numerical methods like finite element analysis (FEA) is very high. A novel reduced order electro-mechanical model is presented. It still accounts for vibro-acoustically relevant harmonics due to pulse-width modulation (PWM), slotting, distributed winding and saturation effects, but is substantially faster (minutes to hours instead of days to weeks per operation point).
Technical Paper

End-Correction in Open Ducts: An Experimental Study

2022-06-15
2022-01-0987
This paper presents the results of an investigation on the influence of a duct’s geometry and shape on its acoustic length, which differs from its physical length by a factor referred to as end-correction. In addition to traditional parameters such as length and diameter, the author has investigated the effect of additional geometry features which are less commonly addressed in the technical literature, such as a diameter contraction or a bent section along the duct. The relative microphone position with respect to the pipe orifice and to the ground surface of the measurement environment has been investigated, showing negligible impact on the measurement results. The sound wave propagation within a pipe featuring a diameter contraction has then been analysed, showing the relationship between the pipe contraction shape and location and the pipe acoustic length.
Technical Paper

21SIAT-0638 - Fleet Analytics - A Data-Driven and Synergetic Fleet Validation Approach

2021-09-22
2021-26-0499
Current developments in automotive industry such as hybrid powertrains and the continuously increasing demands on emission control systems, are pushing complexity still further. Validation of such systems lead to a huge amount of test cases and hence extreme testing efforts on the road. At the same time the pressure to reduce costs and minimize development time is creating challenging boundaries on development teams. Therefore, it is of utmost importance to utilize testing and validation prototypes in the most efficient way. It is necessary to apply high levels of instrumentation and collect as much data as possible. And a streamlined data pipeline allows the fleet managers to get new insights from the raw data and control the validation vehicles as well as the development team in the most efficient way. In this paper we will demonstrate a data-driven approach for validation testing.
Technical Paper

Vehicle Energy Conversion and Performance Simulation of a High Geometric Compression Ratio Engine

2021-03-26
2020-36-0258
The constant demand regarding vehicle efficiency and emissions improvement is a consequence of the expected very restrict emission regulations in the whole world. Despite the vehicle market being changing due to several new powertrain configurations options, such as hybrid and electric, internal combustion engines will still play an important role in future global vehicle market, due to its applicability in powertrain systems. Among other engine parameters, the geometric compression ratio has an important impact on the engine thermal efficiency and vehicle performance, however such parameter requires deep investigations in order to avoid operation with pre ignition and combustion knocking events. Vehicle simulation is widely used to select powertrain adequately, with respect to fuel consumption and performance.
Technical Paper

Automated Outlier Detection in Multidimensional Driveability Data Using AVL-DRIVE

2020-12-23
2020-01-5216
With the increased number of variants, the preservation of a brand-specific vehicle DNA becomes more and more important. Paired with growing customer expectations, brand DNA can be a crucial point in the decision-making process of buying a new vehicle. Whereas the customer will assess the DNA subjectively during driving by evaluating the vehicle drive quality (“driveability”), most manufacturers are not merely relying on subjective evaluations by having test drivers perform maneuvers with prototype vehicles. Nowadays, the assessment is performed objectively during the vehicle development process. As a supporting measure, the Anstalt für Verbrennungskraftmaschinen List (AVL) has made the objective assessment tool AVL-DRIVE commercially available. Up to now, the AVL-DRIVE ratings had to be manually analyzed and checked for outliers. Low ratings and high deviations to a priori specified target values are a good starting point for the search of outliers.
Technical Paper

Comparison of Particulate Matter and Number Emissions from a Floating and a Fixed Caliper Brake System of the Same Lining Formulation

2020-10-05
2020-01-1633
The particulate emissions of two brake systems were characterized in a dilution tunnel optimized for PM10 measurements. The larger of them employed a fixed caliper (FXC) and the smaller one a floating caliper (FLC). Both used ECE brake pads of the same lining formulation. Measured properties included gravimetric PM2.5 and PM10, Particle Number (PN) concentrations of both untreated and thermally treated (according to exhaust PN regulation) particles using Condensation Particle Counters (CPCs) having 23 and 10 nm cut-off sizes, and an Optical Particle Sizer (OPS). The brakes were tested over a section (trip-10) novel test cycle developed from the database of the Worldwide harmonized Light-Duty vehicles Test Procedure (WLTP). A series of trip-10 tests were performed starting from unconditioned pads, to characterize the evolution of emissions until their stabilization. Selected tests were also performed over a short version of the Los Angeles City Cycle.
Journal Article

Measuring Automotive Exhaust Particles Down to 10 nm

2020-09-15
2020-01-2209
The latest generation of internal combustion engines may emit significant levels of sub-23 nm particles. The main objective of the Horizon 2020 “DownToTen” project was to develop a robust methodology and provide policy recommendations towards the particle number (PN) emissions measurements in the sub-23 nm region. In order to achieve this target, a new portable exhaust particle sampling system (PEPS) was developed, being capable of measuring exhaust particles down to at least 10 nm under real-world conditions. The main design target was to build a system that is compatible with current PMP requirements and is characterized by minimized losses in the sub-23 nm region, high robustness against artefacts and high flexibility in terms of different PN modes investigation, i.e. non-volatile, volatile and secondary particles.
Technical Paper

Numerical Investigation and Experimental Comparison of ECN Spray G at Flash Boiling Conditions

2020-04-14
2020-01-0827
Fuel injection is a key process influencing the performance of Gasoline Direct Injection (GDI) Engines. Injecting fuel at elevated temperature can initiate flash boiling which can lead to faster breakup, reduced penetration, and increased spray-cone angle. Thus, it impacts engine efficiency in terms of combustion quality, CO2, NOx and soot emission levels. This research deals with modelling of flash boiling processes occurring in gasoline fuel injectors. The flashing mass transfer rate is modelled by the advanced Hertz-Knudsen model considering the deviation from the thermodynamic-equilibrium conditions. The effect of nucleation-site density and its variation with degree of superheat is studied. The model is validated against benchmark test cases and a substantiated comparison with experiment is achieved.
Technical Paper

Potential for Emission Reduction and Fuel Economy with Micro & Mild HEV

2019-11-21
2019-28-2504
The development of modern combustion engines (spark ignition as well as compression ignition) for vehicles compliant with future oriented emission legislation (BS6, Euro VI, China 6) has introduced several technologies for improvement of both fuel efficiency as well as low emissions combustion strategies. Some of these technologies as there are high pressure multiple injection systems or sophisticated exhaust gas after treatment system imply substantial increase in test and calibration time as well as equipment cost. With the introduction of 48V systems for hybridization a cost- efficient enhancement and, partially, an even attractive alternative is now available. An overview will be given on current technologies as well as on implemented test procedures. The focus will be on solutions which have potential for the Indian market, i.e. solutions which can be implemented with moderate application effort for currently available compact and medium size cars.
Technical Paper

SI Engine Combustion and Knock Modelling Using Detailed Fuel Surrogate Models and Tabulated Chemistry

2019-04-02
2019-01-0205
In the context of today’s and future legislative requirements for NOx and soot particle emissions as well as today’s market trends for further efficiency gains in gasoline engines, computational fluid dynamics (CFD) models need to further improve their intrinsic predictive capability to fulfill OEM needs towards the future. Improving fuel chemistry modelling, knock predictions and the modelling of the interaction between the chemistry and turbulent flow are three key challenges to improve the predictivity of CFD simulations of Spark-Ignited (SI) engines. The Flamelet Generated Manifold (FGM) combustion modelling approach addresses these challenges. By using chemistry pre-tabulation technologies, today’s most detailed fuel chemistry models can be included in the CFD simulation. This allows a much more refined description of auto-ignition delays for knock as well as radical concentrations which feed into emission models, at comparable or even reduced overall CFD run-time.
Technical Paper

Modular and Swappable 48V Battery Systems for Emerging Markets

2019-01-09
2019-26-0032
Electrification globally shows promise in reducing greenhouse and noxious emissions. Although there is immense potential in such technologies penetrating across vehicle segments in the Indian market, the key lies in offering scalable, cost effective battery solutions suiting the diverse product and customer needs. This paper describes the development and possible applications of a low voltage battery system that fulfills the current needs on the Indian market. Based on real-world driving profiles the energy and power output required for the target platform are determined. Keeping in mind the Indian operating conditions, safety requirements, driving behavior, charging infrastructure, operational costs, supplier network and serviceability, technical requirements for such systems are described. Also, benchmarking data of current battery systems help to optimize the mechanical, thermal, and electrical layouts.
Technical Paper

Results, Assessment and Legislative Relevance of RDE and Fuel Consumption Measurements of Two-Wheeler-Applications

2017-11-05
2017-32-0042
The reduction of environmentally harmful gases and the ambitions to reduce the exploitation of fossil resources lead to stricter legislation for all mobile sources. Legislative development significantly affected improvements in emissions and fuel consumptions over the last years, mainly measured under laboratory conditions. But real world operating scenarios have a major influence on emissions and it is already well known that these values considerably differ from officially published figures [1]. There are regulated emissions by the European Commission by means of real driving scenarios for passenger cars. A methodology to measure real drive emissions RDE is therefore well approved for automotive applications but was not adapted for two-wheeler-applications yet [2]. Hence measurements have been performed on-road and on chassis dynamometer for motorcycles with the state of the art RDE measurement equipment to be prepared for possible future legislation.
Technical Paper

Current Findings in Measurement Technology and Measurement Methodology for RDE and Fuel Consumption for Two-Wheeler-Applications

2017-11-05
2017-32-0041
Real world operating scenarios have a major influence on emissions and fuel consumption. To reduce climate-relevant and environmentally harmful gaseous emissions and the exploitation of fossil resources, deep understanding concerning the real drive behavior of mobile sources is needed because emissions and fuel consumption of e.g. passenger cars, operated in real world conditions, considerably differ from the officially published values which are valid for specific test cycles only [1]. Due to legislative regulations by the European Commission a methodology to measure real drive emissions RDE is well approved for heavy duty vehicles and automotive applications but may not be adapted similar to two-wheeler-applications. This is due to several issues when using the state of the art portable emission measurement system PEMS that will be discussed.
Technical Paper

Prediction of the Combustion and Emission Processes in Diesel Engines Based on a Tabulated Chemistry Approach

2017-10-08
2017-01-2200
Turbulent combustion modeling in a RANS or LES context imposes the challenge of closing the chemical reaction rate on the sub-grid level. Such turbulent models have as their two main ingredients sources from chemical reactions and turbulence-chemistry interaction. The various combustion models then differ mainly by how the chemistry is calculated (level of detail, canonical flame model) and on the other hand how turbulence is assumed to affect the reaction rate on the sub-grid level (TCI - turbulence-chemistry interaction). In this work, an advanced combustion model based on tabulated chemistry is applied for 3D CFD (computational fluid dynamics) modeling of Diesel engine cases. The combustion model is based on the FGM (Flamelet Generated Manifold) chemistry reduction technique. The underlying chemistry tabulation process uses auto-ignition trajectories of homogeneous fuel/air mixtures, which are computed with detailed chemical reaction mechanisms.
X