Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Modeling and Measurement of Tribological Parameters between Piston Rings and Liner in Turbocharged Diesel Engine

2007-04-16
2007-01-1440
This paper presents tribological modeling, experimental work, and validation of tribology parameters of a single cylinder turbocharged diesel engine run at various loads, speeds, intake boost pressures, and cylinder liner temperatures. Analysis were made on piston rings and liner materials, rings mechanical and thermal loads, contact pressure between rings and liner, and lubricant conditions. The engine tribology parameters were measured, and used to validate the engine tribology models. These tribology parameters are: oil film thickness, coefficient of friction between rings and liner, friction force, friction power, friction torque, shear rate, shear stress and wear of the sliding surfaces. In order to measure the oil film thickness between rings and liner, a single cylinder AVL turbocharged diesel engine was instrumented to accept the difference in voltage drop method between rings, oil film, and liner.
Technical Paper

Development of High Temperature Diesel Engine Piston Ring and Cylinder Liner Tribology

2003-03-03
2003-01-1104
Adiabatics, Inc. with the support of the U.S. Army Tank Automotive & Armaments Command has examined the feasibility of using Diamond Like Carbon (DLC) films and Iron Titanate (Fe2TiO5 or IT) for sliding contact surfaces in Low Heat Rejection (LHR) diesel engines. DLCs have long been a popular candidate for use in sliding contact tribo-surfaces where a perceived reduction of friction losses will result in increased engine efficiency [1]. There exists a broad range of technologies for applying DLC films. This paper examines several types of these technologies and their future application to automotive internal combustion engines. Our work focuses upon DLC use for LHR military diesel engines where operating temperatures and pressures are higher than conventional diesel engines. However, a direct transfer of this technology to automotive diesel or gasoline engines exists for these thin films.
X