Refine Your Search

Topic

Author

Search Results

Technical Paper

Snow Particle Characterization. Part B: Morphology Dependent Study of Snow Crystal 3D Properties Using a Convolutional Neural Network (CNN)

2023-06-15
2023-01-1486
This study presents the results of the ICE GENESIS 2021 Swiss Jura Flight Campaign in a way that is readily usable for ice accretion modelling and aims at improving the description of snow particles for model inputs. 2D images from two OAP probes, namely 2D-S and PIP, have been used to extract 3D shape parameters in the oblate spheroid assumption, as there are the diameter of the sphere of equivalent volume as ellipsoid, sphericity, orthogonal sphericity, and an estimation of bulk density of individual ice crystals through a mass-geometry parametrization. Innovative shape recognition algorithm, based on Convolutional Neural Network, has been used to identify ice crystal shapes based on these images and produce shape-specific mass particle size distributions to describe cloud ice content quantitatively in details. 3D shape descriptors and bulk density have been extracted for all the data collected in cloud environments described in the regulation as icing conditions.
Technical Paper

Snow Particle Characterization. Part A: Statistics of Microphysical Properties of Snow Crystal Populations from Recent Observations Performed during the ICE GENESIS Project

2023-06-15
2023-01-1492
Measurements in snow conditions performed in the past were rarely initiated and best suited for pure and extremely detailed quantification of microphysical properties of a series of microphysical parameters, needed for accretion modelling. Within the European ICE GENESIS project, a considerable effort of natural snow measurements has been made during winter 2020/21. Instrumental means, both in-situ and remote sensing were deployed on the ATR-42 aircraft, as well as on the ground (ground station at ‘Les Eplatures’ airport in the Swiss Jura Mountains with ATR-42 overflights). Snow clouds and precipitation in the atmospheric column were sampled with the aircraft, whereas ground based and airborne radar systems allowed extending the observations of snow properties beyond the flight level chosen for the in situ measurements.
Technical Paper

Assessing Mixed-Phase Conditions during the ICE GENESIS Snow Measurement Campaign

2023-06-15
2023-01-1494
In the framework of the European ICE GENESIS project (https://www.ice-genesis.eu/), a field experiment was conducted in the Swiss Jura in January 2021 in order to characterize snow microphysical properties and document snow conditions for aviation industry purposes. Complementary to companion papers reporting on snow properties, this study presents an investigation on mixed-phase conditions sampled during the ICE GENESIS field campaign. Using in situ measurement of the liquid and total water content, the ice mass fraction is calculated and serves as a criteria to identify mixed-phase conditions. In the end, mixed phase conditions were identified in almost 30 % of the 3800 km long cloud samples included in the ICE GENESIS dataset. The data suggests that the occurrence of mixed-phase does not clearly depend on temperature in the 0 to -10 °C range, but varies significantly from one cloud system to another.
Technical Paper

Minimum Operational Performance Standards for Weather Radar Ice Crystal Detection Function

2023-06-15
2023-01-1433
The RTCA SC-230 committee began working on minimum operational performance standards (MOPS) for ice crystal detection using weather radar in 2018. The resulting MOPS document will be released in 2023. This paper presents the rationale, summarizes key requirements, and discusses means of validation for an ice crystal detection function incorporated in an airborne weather radar system.
Research Report

The Right Level of Automation for Industry 4.0

2022-05-16
EPR2022013
In its entirety, automation is part of an integrated, multi-disciplinary product development process including the design, process, production, logistics, and systems approach—it depends on all these areas, but it also influences them as well. Automation in aerospace manufacturing is present throughout the entire supply chain, from elementary part manufacturing at suppliers up to final assembly, and a clear understanding of all the benefits (and drawbacks) of automation would help designers and engineers select the right designs for and levels of automation. The Right Level of Automation Within Industry 4.0 examines all impacts of automation that should be known by designers, manufacturers, and companies before investments in automation-related decisions are made—regardless of the which industry they work in. The process and the set of criteria discussed in this report will help decision makers select the right level of automation.
Research Report

Unsettled Technology Areas in Deterministic Assembly Approaches for Industry 4.0

2021-08-20
EPR2021018
Increased production rates and cost reduction are affecting manufacturing in all mobility industry sectors. One enabling methodology that could achieve these goals in the burgeoning “Industry 4.0” environment is the optimized deterministic assembly (DA) approach. It always forms the same final structure and has a strong link to design-for-assembly and design-for-automation. The entire supply chain is considered, with drastic savings at the final assembly line level through recurring costs and lead-time reduction. Unsettled Technology Areas in Deterministic Assembly Approaches for Industry 4.0 examines the evolution of previous assembly principles that lead up to and enable the DA approach, related simulation methodologies, and undefined and unsolved links between these domains. Click here to access the full SAE EDGETM Research Report portfolio.
Research Report

Unsettled Technology Domains in Industrial Smart Assembly Tools Supporting Industry 4.0

2020-09-29
EPR2020018
“Smart” refers to tools that are “specific, measurable, achievable, reasonable/realistic, and time bound.” Smart assembly tools are used in many industries, including automotive, aerospace, and space for measuring, inspecting, gauging, drilling, and installing all existing fastening systems. Inside the Industry 4.0 environment, these tools have a huge influence on Information and Communication Technology (ICT), assembly cost reduction, process control, and even the product and process quality. These four domains—and their undefined nature—are the focus of this SAE EDGE™ Research Report. The technical issues identified here need to be discussed, the goals clarifying the scope of the industry-wide need to be aligned, and the issues requiring standardization need prioritized. NOTE: SAE EDGE Research Reports are intended to identify and illuminate key issues in emerging, but still unsettled, technologies of interest to the mobility industry.
Technical Paper

Optimization of Automated Airframe Assembly Process on Example of A350 S19 Splice Joint

2019-09-16
2019-01-1882
The paper presents the numerical approach to simulation and optimization of A350 S19 splice assembly process. The main goal is to reduce the number of installed temporary fasteners while preventing the gap between parts from opening during drilling stage. The numerical approach includes computation of residual gaps between parts, optimization of fastener pattern and validation of obtained solution on input data generated on the base of available measurements. The problem is solved with ASRP (Assembly Simulation of Riveting Process) software. The described methodology is applied to the optimization of the robotized assembly process for A350 S19 section.
Technical Paper

Extension of a 2D Algorithm for Catch Efficiency Calculation to Three Dimensions

2019-06-10
2019-01-2013
Accurate calculation of the catch efficiency β is of paramount importance for any ice accretion calculation since β is the most important factor in determining the mass of ice accretion. A new scheme has been proposed recently in [1] for accurately calculating β on a discretized two-dimensional geometry based on the results of a Lagrangian droplet trajectory integrator (start and impact conditions). This paper proposes an extension to the algorithm in Ref. [1], which is applicable to three-dimensional surfaces with arbitrary surface discretization. The 3D algorithm maintains the positive attributes of the original 2D algorithm, namely mass conservation of the impinging water, capability to deal with overlapping impingement regions and with crossing trajectories, computational efficiency of the algorithm, and low number of trajectories required to reach good accuracy in catch efficiency.
Journal Article

Uncertainty of the Ice Particles Median Mass Diameters Retrieved from the HAIC-HIWC Dataset: A Study of the Influence of the Mass Retrieval Method

2019-06-10
2019-01-1983
In response to the ice crystal icing hazard identified twenty years ago, aviation industry, regulation authorities, and research centers joined forces into the HAIC-HIWC international collaboration launched in 2012. Two flight campaigns were conducted in the high ice water content areas of tropical mesoscale convective systems in order to characterize this environment conducive to ice crystal icing. Statistics on cloud microphysical properties, such as Ice Water Content (IWC) or Mass Median Diameter (MMD), derived from the dataset of in situ measurements are now being used to support icing certification rulemaking and anti-icing systems design (engine and air data probe) activities. This technical paper focuses on methodological aspects of the derivation of MMD. MMD are estimated from PSD and IWC using a multistep process in which the mass retrieval method is a critical step.
Technical Paper

Combination of Experimental and Computational Approaches to A320 Wing Assembly

2017-09-19
2017-01-2085
The paper is devoted to the simulation of A320 wing assembly on the base of numerical experiments carried out with the help of ASRP software. The main goal is to find fasteners’ configuration with minimal number of fastening elements that provides closing of admissible initial gaps. However, for considered junction type initial gap field is not known a priori though it should be provided as input data for computations. In order to resolve this problem the methodology of random initial gap generation based on available results of gap measurements is developed along with algorithms for optimization of fasteners' configuration on generated initial gaps. Presented paper illustrates how this methodology allows optimizing assembly process for A320 wing.
Technical Paper

A350XWB Icing Certification Overview

2015-06-15
2015-01-2111
The intent of this paper is to provide a general overview of the main engineering and test activities conducted in order to support A350XWB Ice and Rain Protection Systems certification. Several means of compliance have been used to demonstrate compliance with applicable Certification Basis (CS 25 at Amendment 8 + CS 25.795 at Amendment 9, FAR 25 up to Amendment 129) and Environmental protection requirements. The EASA Type Certificate for the A350XWB was received the 30th September 2014 after 7 years of development and verification that the design performs as required, with five A350XWB test aircraft accumulating more than 2600 flight test hours and over 600 flights. The flight tests were performed in dry air and measured natural icing conditions to demonstrate the performance of all ice and rain protection systems and to support the compliance demonstration with CS 25.1419 and CS25.21g.
Technical Paper

Overview of the HAIC “Space-borne Observation and Nowcasting of High Ice Water Content Regions” Sub-Project and Mid-Term Results

2015-06-15
2015-01-2123
The High Altitude Ice Crystals (HAIC) Sub-Project 3 (SP3) focuses on the detection of cloud regions with high ice water content (IWC) from current available remote sensing observations of space-based geostationary and low-orbit missions. The SP3 activities are aimed at supporting operationally the two up-coming HAIC flight campaigns (the first one in May 2015 in Cayenne, French Guyana; the second one in January 2016 in Darwin, Australia) and ultimately provide near real-time cloud monitoring to Air Traffic Management. More in detail the SP3 activities focus on the detection of high IWC from space-borne geostationary Meteosat daytime imagery, explore the synergy of concurrent multi-spectral multiple-technique observations from the low-orbit A-Train mission to identify specific signatures in high IWC cloud regions, and finally develop a satellite-based nowcasting tool to track and monitor convective systems over the Tropical Atlantic.
Technical Paper

Application of EASA Part 21 Requirement Regarding Change to Aircraft Type Design by Airbus

2013-09-17
2013-01-2124
Airbus business and Extended Enterprise require more and more involvement of design and built suppliers, tier 1 but also across the complete supply chain i.e. tier 2-n. These suppliers are not working only for Aerospace industry and may have different cultures. The pressure on cost and overall efficiency is high and everybody has to cope with obsolescence and new regulation (e.g. REACH (Registration, Evaluation and Authorization and Restriction of Chemicals)). So it became very important for Airbus to clarify the criteria under which a change can be done without Airbus review, and criteria under which a change can be done without Airworthiness authority review.
Journal Article

Application of Model Based Functional Specification Methods to Environmental Control Systems Engineering

2011-10-18
2011-01-2504
The paper presents an innovative approach for the functional specification of complex and highly integrated aircraft control systems, such as the Environmental Control System (ECS), by applying model based specification methods. Complexity and effectiveness of modern ECS have significantly increased during the last few years along with development of new technologies and innovations in control engineering as well as digital data distribution and processing. Efficient management of cabin air flows on the one hand makes the ECS more energy-saving and on the other hand more complex with regard to its functionality and interaction with other interfaced aircraft systems. Numerous data interfaces to other systems and a high degree of automation are typical for a modern ECS. The aircraft manufacturer specifies the entire ECS functions and its interactions within the aircraft.
Journal Article

Application of Genetic Algorithm for Preliminary Trajectory Optimization

2011-10-18
2011-01-2594
The aviation sector has played a significant role in shaping the world into what it is today. The rapid growth of global economies and the corresponding sharp rise in the number of people now wanting to travel on business and for pleasure, has largely been responsible for the development of this industry. With a predicted rise in Revenue Passenger Kilometers (RPK) by over 150% in the next 20 years, the industry will correspondingly be a significant contributor to environmental emissions. Under such circumstances optimizing aircraft trajectories for lowered emissions will play a critical role amongst various other measures, in mitigating the probable environmental effects of increased air traffic. Aircraft trajectory optimization using evolutionary algorithms is a novel field and preliminary studies have indicated that a reduction in emissions is possible when set as objectives.
Journal Article

Flexible Tooling for Wing Box Rib Clamping and Drilling

2011-10-18
2011-01-2639
Currently the wing box rib assembly process requires the manual location and temporary fixing of components within product specific jig or fixtures for drilling. After drilling and reaming, parts are separated, cleaned, deburred prior to adding sealant, reclaiming and final bolting, but this may significantly increase cost, manufacturing lead-time, reduces flexibility and cannot usually be economically modified for use on other aircraft types. Due to potential increase in demand for the next generation single isle aircraft, existing tooling solutions have to be improved and new technologies have to be developed. This paper describes the development and testing of flexible tooling to provide clamping and support for drilling wing box ribs to mating rib posts within a restricted environment. Results are presented along with a discussion of the problems that may be encountered during clamping trials.
Journal Article

Optimal Control to Recover a Safe Situation from Low/High-Energy Situation in Approach

2011-10-18
2011-01-2618
The main study illustrated in this paper deals with the computation of commands which allow an aircraft to recover a nominal energy trajectory from a low/high energy state during the approach phase. The commands taken into account in this paper are the slat/flap aerodynamic control surfaces which allow the aircraft to maintain the best lift performance for low velocities during the approach phase. In this study, it is supposed that the aircraft maintains a known vertical trajectory, simplified by a constant ground slope, while no engines and airbrakes are used. A non-linear optimization approach is studied in this paper and two methods are tested: a) Hermite-Simpson, trapezoidal collocation methods, b) Sequential numerical integration method. These different methods are tested and simulation results are given for comparison, with different initial velocities permitting to change the initial energy state.
Journal Article

A Cockpit Point of View on "Human Factors" for a Changing ATM Environment

2011-10-18
2011-01-2709
The vision of SESAR is to integrate and implement new technologies to improve air traffic management (ATM) performance. Enhanced automation and new separation modes characterize the future concept of operations, where the role of the human operator will remain central by integrating more managing and decision-making functions. The expected changes represent challenges for the human actors in the aircraft and on ground and must be taken into account during the development phase. Integrating the human in the ATM system development starting from the early design phase is a key factor for future acceptability. This paper describes the adaptation of currently applied Cockpit Human Factors processes in order to be able to design the aircraft for the future ATM environment.
Journal Article

Optimization of an Unconventional Environmental Control System Architecture

2011-10-18
2011-01-2691
The Environmental Control System is a relevant element of any conventional or More Electric Aircraft (MEA). It is either the key consumer of pneumatic power or draws a substantial load from the electric power system. The objective of this paper is to present a tool for the design of Environmental Control Systems and to apply it to an unconventional system. The approach is based on a recently proposed methodology, which is improved with respect to flexibility and ease-of-use. Furthermore, modeling and simulation of vapor compression cycles is discussed, which are candidate technological solutions for More Electric Aircraft concepts. A steady-state moving boundary method is presented to model heat exchangers for such applications. Finally, the resulting design environment is applied to optimization of an unconventional ECS architecture and exemplary results are presented.
X