Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Methods for Assessing the Corrosion Behaviour of Heat Exchanger Materials and Components

1997-05-19
971787
To determine the true galvanic compatibility of radiator components a test has been developed using a zero resistance ammeter (ZRA) technique, which measures the magnitude of the galvanic current between different materials, thus allowing specific corrosion rates to be calculated. It is believed that the use of the ZRA technique will help provide a better balance between sacrificial behaviour and thermal performance of fin alloys. In particular, it will be demonstrated that it is not necessary to make additions of zinc to the fin alloys to attain a sacrificial effect, which in the longer term may compromise the recyclability of radiator units.
Technical Paper

Effects of Alloy Composition and Condition on Filiform Corrosion Performance of Cast Aluminum Wheels

1997-02-24
970021
The movement towards extended warranties in the automobile industry has focussed attention on corrosion performance of many components, particularly cast aluminum wheels. Filiform corrosion is of particular concern since it can severely affect the appearance of the wheel. The appearance and the choice of wheel design are the most attractive features to customers. In order to enhance the filiform corrosion resistance of cast aluminum wheels, cleaning, pretreatment, coating and alloy parameters are critical and need to be optimized. In this paper, the effects of alloy composition and condition on filiform corrosion are reviewed. A series of cast discs were prepared with variations in iron, zinc and copper levels around the standard A356.2 alloy composition. Apart from composition, certain specimens were subjected to different heat treatment and ageing conditions. The effects of porosity and different machining procedures were also evaluated.
Technical Paper

Development of an Understanding of the Critical Factors Influencing Waterside Corrosion Behaviour of Brazed Aluminium Radiators

1994-03-01
940499
The application of aluminium alloy materials for automotive heat exchangers, including engine cooling and air conditioning systems, is now widespread. To meet the industry demands of both extended service life and improved reliability for heat exchanger components, it is important that the critical factors influencing corrosion behaviour are properly understood, particularly with the trend towards downgauging of materials. To maximise resistance to waterside corrosion, manufacturers have adopted the approach of using an internal cladding, commonly a high purity or zinc - containing alloy, to provide sacrificial protection of the core material. Recent studies have shown that the presence of an internal cladding can, under certain conditions, promote rapid localised attack of the core alloy.
Technical Paper

NOCOLOK™ Sil Flux - A Novel Approach for Brazing Aluminum

1994-03-01
940502
The need to reduce the weight of automobiles has favored the widespread use of aluminum in automotive ventilation and cooling systems. Space, weight restrictions, the need for increased thermal efficiency, and recycling legislation have all contributed to new designs for heat exchangers. In many cases there has been a move to using extruded tube rather than seam-welded tube, leading to a reliance on the relatively more expensive clad fin. A new process, NOCOLOK™ Sil flux brazing, offers the potential for materials cost savings through the use of “in-situ” filler metal generation. This eliminates the need for using clad brazing materials. It can be applied to a number of alloy systems and product forms. This new technology is firmly rooted in the well established NOCOLOK™ non-corrosive aluminum brazing flux system.
Technical Paper

The Lincoln Mark VIII Cast Aluminium Suspension Control Arm (Parallel Development)

1994-03-01
940874
An A356T61 cast aluminum lower suspension control arm has been put into production for the Lincoln Mark VIII. The mechanical requirements which drive the design for a critical part like this are discussed, together with some of the background knowledge needed to address the issues surrounding alloy and process selection. Particularly as it must be realized that the process impacts the degree to which the potential of the alloy can be realized. With this in mind, some of the research activities which have been spawned in parallel with the production activities are briefly covered. The sequence of events involved in the design and prototyping of the part itself are outlined, as is the implementation of a specialized low pressure casting line to produce the part. Part performance to date has been excellent and the quality controls and test methods which have been put in place to see that this remains so are also covered.
Technical Paper

Development of a Long Life Aluminium Brazing Sheet Alloy with Enhanced Mechanical Performance

1994-03-01
940505
The use of aluminium alloys for automotive heat exchangers has increased considerably in the last 15-20 years and, in parallel, new alloys have been developed to meet the increased demand for strength and improved corrosion resistance. A non-heat treatable Al-Mn alloy, X800, has been developed by Alcan to significantly increase the corrosion resistance of radiator tubes when subjected to typical service environments. The alloy development employed considerable microstructural understanding to provide heat exchanger manufacturers with an improved product that readily attained enhanced performance during any brazing cycle. A similar philosophy has been adopted to address the issue of increased mechanical performance, higher intrinsic sheet strength, both during and after brazing, provides the opportunity for sheet downgauging and thus lightweighting of components.
Technical Paper

The Recycling and Reclamation of Metal-Matrix Composites

1993-03-01
930182
The recycling and reclamation of metal-matrix composites (MMC's) are critical aspects of the commercialization process. By recycling, we mean the economic processing of MMC scrap for reuse as composite. Reclamation refers to the separation and recovery of the individual components of the composite, i.e., the various aluminum alloys and ceramic particles. Three forms of MMC wrought alloy scrap have been considered; i.e., D. C. (direct chill) cast log ends, extrusion butts, and cut extrusion scrap. Recycling each of these forms of scrap back into D. C. cast extrusion billet has been demonstrated. This has been accomplished by recycling the scrap back through the basic mixing process. Various ratios of scrap to virgin composite have been explored and optimum blends are being studied. Similarly, for MMC foundry alloy (high silicon) gates and risers produced in shape-casting, fluxing and degassing techniques have been developed so these may be recycled back into useful castings.
X